» Articles » PMID: 35551197

Clustering and Halogen Effects Enabled Red/near-infrared Room Temperature Phosphorescence from Aliphatic Cyclic Imides

Overview
Journal Nat Commun
Specialty Biology
Date 2022 May 13
PMID 35551197
Authors
Affiliations
Soon will be listed here.
Abstract

Pure organic room temperature phosphorescence (RTP) materials become increasingly important in advanced optoelectronic and bioelectronic applications. Current phosphors based on small aromatic molecules show emission characteristics generally limited to short wavelengths. It remains an enormous challenge to achieve red and near-infrared (NIR) RTP, particularly for those from nonaromatics. Here we demonstrate that succinimide derived cyclic imides can emit RTP in the red (665, 690 nm) and NIR (745 nm) spectral range with high efficiencies of up to 9.2%. Despite their rather limited molecular conjugations, their unique emission stems from the presence of the imide unit and heavy atoms, effective molecular clustering, and the electron delocalization of halogens. We further demonstrate that the presence of heavy atoms like halogen or chalcogen atoms in these systems is important to facilitate intersystem crossing as well as to extend through-space conjugation and to enable rigidified conformations. This universal strategy paves the way to the design of nonconventional luminophores with long wavelength emission and for emerging applications.

Citing Articles

Simplifying complexity: integrating color science for predictable full-color and on-demand persistent luminescence using industrial disperse dyes.

Xiao G, Wang X, Fang X, Du J, Jiang Y, Miao D Chem Sci. 2024; .

PMID: 39364075 PMC: 11446313. DOI: 10.1039/d4sc05741d.


Efficient intersystem crossing and tunable ultralong organic room-temperature phosphorescence via doping polyvinylpyrrolidone with polyaromatic hydrocarbons.

Yang G, Hao S, Deng X, Song X, Sun B, Hyun W Nat Commun. 2024; 15(1):4674.

PMID: 38824140 PMC: 11144212. DOI: 10.1038/s41467-024-48913-x.


Insights into mechanistic interpretation of crystalline-state reddish phosphorescence of non-planar π-conjugated organoboron compounds.

Adachi Y, Kurihara M, Yamada K, Arai F, Hattori Y, Yamana K Chem Sci. 2024; 15(21):8127-8136.

PMID: 38817577 PMC: 11134383. DOI: 10.1039/d4sc01184h.


Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect.

Yao X, Li Y, Shi H, Yu Z, Wu B, Zhou Z Nat Commun. 2024; 15(1):4520.

PMID: 38806515 PMC: 11133472. DOI: 10.1038/s41467-024-48856-3.


Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence.

Ma D, Li Z, Tang K, Gong Z, Shao J, Zhong Y Nat Commun. 2024; 15(1):4402.

PMID: 38782924 PMC: 11116439. DOI: 10.1038/s41467-024-48836-7.


References
1.
Yan Z, Lin X, Sun S, Ma X, Tian H . Activating Room-Temperature Phosphorescence of Organic Luminophores via External Heavy-Atom Effect and Rigidity of Ionic Polymer Matrix*. Angew Chem Int Ed Engl. 2021; 60(36):19735-19739. DOI: 10.1002/anie.202108025. View

2.
Xiao L, Fu H . Enhanced Room-Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. Chemistry. 2018; 25(3):714-723. DOI: 10.1002/chem.201802819. View

3.
Zhang T, Ma X, Wu H, Zhu L, Zhao Y, Tian H . Molecular Engineering for Metal-Free Amorphous Materials with Room-Temperature Phosphorescence. Angew Chem Int Ed Engl. 2019; 59(28):11206-11216. DOI: 10.1002/anie.201915433. View

4.
Zhang T, Ma X, Tian H . A facile way to obtain near-infrared room-temperature phosphorescent soft materials based on Bodipy dyes. Chem Sci. 2020; 11(2):482-487. PMC: 7067252. DOI: 10.1039/c9sc05502a. View

5.
Kanosue K, Ando S . Polyimides with Heavy Halogens Exhibiting Room-Temperature Phosphorescence with Very Large Stokes Shifts. ACS Macro Lett. 2022; 5(12):1301-1305. DOI: 10.1021/acsmacrolett.6b00642. View