Zhang R, Wang X, Xue J, Li X, Li Y, Ding Y
Molecules. 2024; 29(19).
PMID: 39407675
PMC: 11478309.
DOI: 10.3390/molecules29194749.
Wang W, Qiao J, Su Z, Wei H, Wu J, Liu Y
Front Cardiovasc Med. 2024; 11:1410006.
PMID: 39171325
PMC: 11337230.
DOI: 10.3389/fcvm.2024.1410006.
Beger R, Goodacre R, Jones C, Lippa K, Mayboroda O, ONeill D
Metabolomics. 2024; 20(5):95.
PMID: 39110307
PMC: 11306277.
DOI: 10.1007/s11306-024-02155-6.
Chen Z, Fung E, Wong C, Ling L, Lui G, Lai C
Metabolites. 2024; 14(7).
PMID: 39057703
PMC: 11278819.
DOI: 10.3390/metabo14070380.
Wang J, Cui J, Liu Z, Yang Y, Li Z, Liu H
Molecules. 2024; 29(9).
PMID: 38731650
PMC: 11085193.
DOI: 10.3390/molecules29092155.
Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review.
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J
Discov Oncol. 2024; 15(1):111.
PMID: 38602556
PMC: 11009183.
DOI: 10.1007/s12672-024-00902-8.
A population-based urinary and plasma metabolomics study of environmental exposure to cadmium.
Ishibashi Y, Harada S, Eitaki Y, Kurihara A, Kato S, Kuwabara K
Environ Health Prev Med. 2024; 29:22.
PMID: 38556356
PMC: 10992994.
DOI: 10.1265/ehpm.23-00218.
Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0.
Wanichthanarak K, In-On A, Fan S, Fiehn O, Wangwiwatsin A, Khoomrung S
Gigascience. 2024; 13.
PMID: 38488666
PMC: 10941642.
DOI: 10.1093/gigascience/giae005.
A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions.
Kumar B, Lorusso E, Fosso B, Pesole G
Front Microbiol. 2024; 15:1343572.
PMID: 38419630
PMC: 10900530.
DOI: 10.3389/fmicb.2024.1343572.
Comparative putative metabolites profiling of Tachypleus gigas and Carcinoscorpius rotundicauda hemocytes stimulated with lipopolysaccharide.
Jasni N, Wee C, Ismail N, Yaacob N, Othman N
Sci Rep. 2024; 14(1):3968.
PMID: 38368470
PMC: 10874427.
DOI: 10.1038/s41598-024-54279-3.
Predicting metabolomic profiles from microbial composition through neural ordinary differential equations.
Wang T, Wang X, Lee-Sarwar K, Litonjua A, Weiss S, Sun Y
Nat Mach Intell. 2024; 5(3):284-293.
PMID: 38223254
PMC: 10786629.
DOI: 10.1038/s42256-023-00627-3.
Distinct Metabolic Profiles of Ocular Hypertensives in Response to Hypoxia.
Langbol M, Rovelt J, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T
Int J Mol Sci. 2024; 25(1).
PMID: 38203366
PMC: 10779258.
DOI: 10.3390/ijms25010195.
- Invited Review - Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation.
Qi W, Xue M, Jia M, Zhang S, Yan Q, Sun H
Anim Biosci. 2024; 37(2):370-384.
PMID: 38186256
PMC: 10838668.
DOI: 10.5713/ab.23.0308.
A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers.
Capaci V, Monasta L, Aloisio M, Sommella E, Salviati E, Campiglia P
Int J Mol Sci. 2023; 24(22).
PMID: 38003247
PMC: 10671314.
DOI: 10.3390/ijms242216057.
Identification of Novel Biomarkers for Early Diagnosis of Atherosclerosis Using High-Resolution Metabolomics.
Sardar S, Nam J, Kim T, Kim H, Park Y
Metabolites. 2023; 13(11).
PMID: 37999255
PMC: 10673153.
DOI: 10.3390/metabo13111160.
Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease.
Rus C, Polla D, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G
Sci Rep. 2023; 13(1):18550.
PMID: 37899458
PMC: 10613621.
DOI: 10.1038/s41598-023-45789-7.
Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants.
Timilsina A, Raut B, Huo C, Khadayat K, Budhathoki P, Ghimire M
RSC Adv. 2023; 13(44):30665-30679.
PMID: 37869390
PMC: 10585453.
DOI: 10.1039/d3ra04037b.
Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios.
Yang Q, Song J, Deng Z, Shi C, Li S, Zhuang G
Eur J Pediatr. 2023; 182(11):5015-5024.
PMID: 37644170
DOI: 10.1007/s00431-023-05171-1.
Integration of metabolomics and machine learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer.
Sun R, Fei F, Wang M, Jiang J, Yang G, Yang N
Cancer Med. 2023; 12(18):19245-19259.
PMID: 37605514
PMC: 10557891.
DOI: 10.1002/cam4.6446.
Exploring Metabolomic Patterns in Type 2 Diabetes Mellitus and Response to Glucose-Lowering Medications-Review.
Shahisavandi M, Wang K, Ghanbari M, Ahmadizar F
Genes (Basel). 2023; 14(7).
PMID: 37510368
PMC: 10379356.
DOI: 10.3390/genes14071464.