6.
Pathak H, Soni D, Chauhan K
. Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill. Chemosphere. 2014; 105:126-32.
DOI: 10.1016/j.chemosphere.2014.01.004.
View
7.
Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F
. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour Technol. 2018; 258:48-56.
DOI: 10.1016/j.biortech.2018.02.106.
View
8.
Lin C, Lo S
. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Res. 2005; 39(6):1037-46.
DOI: 10.1016/j.watres.2004.06.035.
View
9.
Van Nooten T, Lieben F, Dries J, Pirard E, Springael D, Bastiaens L
. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions. Environ Sci Technol. 2007; 41(16):5724-30.
DOI: 10.1021/es070027j.
View
10.
Liang L, Guan X, Shi Z, Li J, Wu Y, Tratnyek P
. Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environ Sci Technol. 2014; 48(11):6326-34.
DOI: 10.1021/es500958b.
View
11.
Wang G, Zhang B, Li S, Yang M, Yin C
. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. Bioresour Technol. 2017; 227:353-358.
DOI: 10.1016/j.biortech.2016.12.070.
View
12.
Guan X, Sun Y, Qin H, Li J, Lo I, He D
. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). Water Res. 2015; 75:224-48.
DOI: 10.1016/j.watres.2015.02.034.
View
13.
Joutey N, Bahafid W, Sayel H, Ananou S, Ghachtouli N
. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res Int. 2013; 21(4):3060-72.
DOI: 10.1007/s11356-013-2249-x.
View
14.
Zhao N, Yin Z, Liu F, Zhang M, Lv Y, Hao Z
. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour Technol. 2018; 260:294-301.
DOI: 10.1016/j.biortech.2018.03.116.
View
15.
Childers S, Ciufo S, Lovley D
. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature. 2002; 416(6882):767-9.
DOI: 10.1038/416767a.
View
16.
Crean D, Coker V, van der Laan G, Lloyd J
. Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ Sci Technol. 2012; 46(6):3352-9.
DOI: 10.1021/es2037146.
View
17.
Miretzky P, Cirelli A
. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater. 2010; 180(1-3):1-19.
DOI: 10.1016/j.jhazmat.2010.04.060.
View
18.
Moore A, De Leon C, Young T
. Rate and extent of aqueous perchlorate removal by iron surfaces. Environ Sci Technol. 2003; 37(14):3189-98.
DOI: 10.1021/es026007t.
View
19.
Nico P, Stewart B, Fendorf S
. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. Environ Sci Technol. 2009; 43(19):7391-6.
DOI: 10.1021/es900515q.
View
20.
Shi J, Zhang B, Qiu R, Lai C, Jiang Y, He C
. Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron. Environ Sci Technol. 2019; 53(6):3198-3207.
DOI: 10.1021/acs.est.8b05053.
View