» Articles » PMID: 35535491

Inflammatory Response in Hematopoietic Stem and Progenitor Cells Triggered by Activating SHP2 Mutations Evokes Blood Defects

Overview
Journal Elife
Specialty Biology
Date 2022 May 10
PMID 35535491
Authors
Affiliations
Soon will be listed here.
Abstract

Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with SHP2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2 mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies, and in vivo transplantability of HSPCs. Single-cell mRNA sequencing of HSPCs from Shp2 zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2 zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.

Citing Articles

Complex Roles of /SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy.

Scheiter A, Lu L, Gao L, Feng G Annu Rev Cancer Biol. 2025; 8(1):15-33.

PMID: 39959686 PMC: 11824402. DOI: 10.1146/annurev-cancerbio-062722-013740.


Progression and perspectives in disease modeling for Juvenile myelomonocytic leukemia.

Fu S, Guo Y, Peng Z, Zhang D, Chang Z, Xiao Y Med Oncol. 2024; 42(1):25.

PMID: 39652257 PMC: 11628578. DOI: 10.1007/s12032-024-02549-5.


In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species.

Orlova S, Ruzina M, Emelianova O, Sergeev A, Chikurova E, Orlov A Genes (Basel). 2024; 15(6).

PMID: 38927661 PMC: 11202958. DOI: 10.3390/genes15060726.


Zebrafish Congenital Heart Disease Models: Opportunities and Challenges.

Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L Int J Mol Sci. 2024; 25(11).

PMID: 38892128 PMC: 11172925. DOI: 10.3390/ijms25115943.


Non-Mammalian Models for Understanding Neurological Defects in RASopathies.

Rodriguez-Martin M, Baez-Flores J, Ribes V, Isidoro-Garcia M, Lacal J, Prieto-Matos P Biomedicines. 2024; 12(4).

PMID: 38672195 PMC: 11048513. DOI: 10.3390/biomedicines12040841.


References
1.
Caye A, Rouault-Pierre K, Strullu M, Lainey E, Abarrategi A, Fenneteau O . Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia. 2019; 34(6):1658-1668. PMC: 7266742. DOI: 10.1038/s41375-019-0662-y. View

2.
Tartaglia M, Niemeyer C, Fragale A, Song X, Buechner J, Jung A . Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003; 34(2):148-50. DOI: 10.1038/ng1156. View

3.
Renshaw S, Loynes C, Trushell D, Elworthy S, Ingham P, Whyte M . A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006; 108(13):3976-8. DOI: 10.1182/blood-2006-05-024075. View

4.
Stachura D, Svoboda O, Campbell C, Espin-Palazon R, Lau R, Zon L . The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013; 122(24):3918-28. PMC: 3854111. DOI: 10.1182/blood-2012-12-475392. View

5.
de Pater E, Trompouki E . Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol. 2018; 6:124. PMC: 6196227. DOI: 10.3389/fcell.2018.00124. View