» Articles » PMID: 35517101

Co-doped Carbon Materials Synthesized with Polymeric Precursors As Bifunctional Electrocatalysts

Overview
Journal RSC Adv
Specialty Chemistry
Date 2022 May 6
PMID 35517101
Authors
Affiliations
Soon will be listed here.
Abstract

The design of stable and high performance metal free bifunctional electrocatalysts is a necessity in alkaline zinc-air batteries for oxygen reduction and evolution reaction. In the present work co-doped carbon materials have been developed from polymeric precursors with abundant active sites to achieve bifunctional activity. A 3-dimensional microporous nitrogen-carbon (NC) and co-doped nitrogen-sulfur-carbon (NSC) and nitrogen-phosphorus-carbon (NPC) were synthesized using poly(2,5-benzimidazole) as an N containing precursor. The obtained sheet like structure shows outstanding ORR and OER performance in alkaline systems with excellent stability compared to Pt/C catalyst. The doped heteroatom in the carbon is expected to have redistributed the charge around heteroatom dopants lowering the ORR potential and modifying the oxygen chemisorption mode thereby weakening the O-O bonding and improving the ORR activity and overall catalytic performance. The bifunctional activity (Δ = - ) of an air electrode for NPC, NSC, NC and Pt/C is 0.82 V, 0.87 V, 1.06 V and 1.03 V respectively, and the NPC value is smaller than most of the reported metal and non-metal based electrocatalysts. The ORR (from onset potential) and OER (10 mA cm) overpotential for NPC, NSC, and NC is (290 mV, 410 mV), (310 mV, 450 mV) and (340 mV, 600 mV) respectively. In the prepared catalyst the NPC exhibited higher ORR and OER activity (NPC > NSC > NC). The doping of P in NPC is found to have a great influence on the microstructure and therefore on the ORR and OER activity.

References
1.
Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A . Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc. 2011; 133(50):20116-9. DOI: 10.1021/ja209206c. View

2.
Silva R, Voiry D, Chhowalla M, Asefa T . Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J Am Chem Soc. 2013; 135(21):7823-6. DOI: 10.1021/ja402450a. View

3.
Guan J, Zhang Z, Ji J, Dou M, Wang F . Hydrothermal Synthesis of Highly Dispersed CoO Nanoparticles on Biomass-Derived Nitrogen-Doped Hierarchically Porous Carbon Networks as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl Mater Interfaces. 2017; 9(36):30662-30669. DOI: 10.1021/acsami.7b08533. View

4.
Gong K, Du F, Xia Z, Durstock M, Dai L . Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009; 323(5915):760-4. DOI: 10.1126/science.1168049. View

5.
Armand M, Tarascon J . Building better batteries. Nature. 2008; 451(7179):652-7. DOI: 10.1038/451652a. View