6.
Cai Z, Yamada I, Yagi S
. ZIF-Derived CoNiS Nanoparticles Immobilized on N-Doped Carbons as Efficient Catalysts for High-Performance Zinc-Air Batteries. ACS Appl Mater Interfaces. 2020; 12(5):5847-5856.
DOI: 10.1021/acsami.9b19268.
View
7.
Tian G, Zhao M, Yu D, Kong X, Huang J, Zhang Q
. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small. 2014; 10(11):2251-9.
DOI: 10.1002/smll.201303715.
View
8.
Xie X, Shang L, Shi R, Waterhouse G, Zhao J, Zhang T
. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale. 2020; 12(24):13129-13136.
DOI: 10.1039/d0nr02486d.
View
9.
Gorlin Y, Jaramillo T
. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc. 2010; 132(39):13612-4.
DOI: 10.1021/ja104587v.
View
10.
Fan X, Peng Z, Ye R, Zhou H, Guo X
. M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Nano. 2015; 9(7):7407-18.
DOI: 10.1021/acsnano.5b02420.
View
11.
Zhang C, Mahmood N, Yin H, Liu F, Hou Y
. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater. 2013; 25(35):4932-7.
DOI: 10.1002/adma.201301870.
View
12.
Niu W, Li L, Liu X, Wang N, Liu J, Zhou W
. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J Am Chem Soc. 2015; 137(16):5555-62.
DOI: 10.1021/jacs.5b02027.
View
13.
Jiao Y, Zheng Y, Jaroniec M, Qiao S
. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J Am Chem Soc. 2014; 136(11):4394-403.
PMC: 3986026.
DOI: 10.1021/ja500432h.
View
14.
Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X
. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano. 2012; 6(11):9541-50.
DOI: 10.1021/nn302674k.
View
15.
Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M
. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J Am Chem Soc. 2014; 136(39):13554-7.
DOI: 10.1021/ja507463w.
View
16.
Fang B, Kim M, Kim J, Yu J
. Controllable synthesis of hierarchical nanostructured hollow core/mesopore shell carbon for electrochemical hydrogen storage. Langmuir. 2008; 24(20):12068-72.
DOI: 10.1021/la801796c.
View
17.
Fang B, Kim J, Kim M, Yu J
. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res. 2012; 46(7):1397-406.
DOI: 10.1021/ar300253f.
View
18.
Zhang Z, Sun J, Dou M, Ji J, Wang F
. Nitrogen and Phosphorus Codoped Mesoporous Carbon Derived from Polypyrrole as Superior Metal-Free Electrocatalyst toward the Oxygen Reduction Reaction. ACS Appl Mater Interfaces. 2017; 9(19):16236-16242.
DOI: 10.1021/acsami.7b03375.
View
19.
Steele B, Heinzel A
. Materials for fuel-cell technologies. Nature. 2001; 414(6861):345-52.
DOI: 10.1038/35104620.
View
20.
Wang Z, Xu D, Xu J, Zhang X
. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev. 2013; 43(22):7746-86.
DOI: 10.1039/c3cs60248f.
View