» Articles » PMID: 35515840

Bilayer MSe (M = Zr, Hf) As Promising Two-dimensional Thermoelectric Materials: a First-principles Study

Overview
Journal RSC Adv
Specialty Chemistry
Date 2022 May 6
PMID 35515840
Authors
Affiliations
Soon will be listed here.
Abstract

Motivated by the experimental synthesis of two-dimensional MSe (M = Zr, Hf) thin films, we set out to investigate the electronic, thermal, and thermoelectric transport properties of 1T-phase MSe (M = Zr, Hf) bilayers on the basis of first-principles calculations and Boltzmann transport theory. Both bilayer ZrSe and HfSe are indirect band gap semiconductors possessing degenerate conduction bands and stair-like-shaped DOS, which provide a high n-doped power factor. In combination with the low lattice thermal conductivity that originated from the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes, the maximum figure of merits at room temperature for n-type doping are predicted as 1.84 and 3.83 for ZrSe and HfSe bilayers, respectively. Our results suggest that bilayer conformation of ZrSe and HfSe are promising thermoelectric materials with superior performance to their bulk counterparts.

Citing Articles

2D layered MSe (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing.

Li G, Du W, Sun S, Lu Q, Chen Z, Liu H Nanophotonics. 2024; 11(14):3383-3394.

PMID: 39635553 PMC: 11501608. DOI: 10.1515/nanoph-2022-0250.


2D Janus ZrSSe/SnSSe Heterostructure: A Promising Candidate for Photocatalytic Water Splitting.

Anjum N, Kashif M, Shahzad A, Rasheed A, Ren G ACS Omega. 2024; 9(18):19848-19858.

PMID: 38737088 PMC: 11079906. DOI: 10.1021/acsomega.3c08620.


High throughput calculations for a dataset of bilayer materials.

Barik R, Woods L Sci Data. 2023; 10(1):232.

PMID: 37085503 PMC: 10121719. DOI: 10.1038/s41597-023-02146-7.


First principles study on structural, electronic and optical properties of HfSSe and ZrSSe ternary alloys.

Razeghizadeh M, Pourfath M RSC Adv. 2022; 12(22):14061-14068.

PMID: 35558829 PMC: 9092027. DOI: 10.1039/d2ra01905a.


Improved Thermoelectric Performance of Monolayer HfS by Strain Engineering.

Wang H, Lan Y, Dai B, Zhang X, Wang Z, Ge N ACS Omega. 2021; 6(44):29820-29829.

PMID: 34778655 PMC: 8582045. DOI: 10.1021/acsomega.1c04286.

References
1.
Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S . Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater. 2013; 12(8):754-9. DOI: 10.1038/nmat3673. View

2.
Cai Y, Zhang G, Zhang Y . Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons. J Am Chem Soc. 2014; 136(17):6269-75. DOI: 10.1021/ja4109787. View

3.
Grimme S, Antony J, Ehrlich S, Krieg H . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15):154104. DOI: 10.1063/1.3382344. View

4.
Xi J, Long M, Tang L, Wang D, Shuai Z . First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale. 2012; 4(15):4348-69. DOI: 10.1039/c2nr30585b. View

5.
Li G, Ding G, Gao G . Thermoelectric properties of SnSe monolayer. J Phys Condens Matter. 2016; 29(1):015001. DOI: 10.1088/0953-8984/29/1/015001. View