» Articles » PMID: 35510840

Anatomical and Functional Connectivity Support the Existence of a Salience Network Node Within the Caudal Ventrolateral Prefrontal Cortex

Overview
Journal Elife
Specialty Biology
Date 2022 May 5
PMID 35510840
Authors
Affiliations
Soon will be listed here.
Abstract

Three large-scale networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VANet and DANet) and salience (SNet) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VANet and DANet, but there is a gap in the current knowledge regarding its involvement in the SNet. Herein, we used a translational and multimodal approach to demonstrate the existence of a SNet node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomical connectivity strength between different vlPFC areas and the frontal and insular cortices. The strongest connections were with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) - the main cortical SNet nodes. These inputs converged in the caudal area 47/12, an area that has strong projections to subcortical structures associated with the SNet. Second, we used resting-state functional MRI (rsfMRI) in NHP data to validate this SNet node. Third, we used rsfMRI in the human to identify a homologous caudal 47/12 region that also showed strong connections with the SNet cortical nodes. Taken together, these data confirm a SNet node in the vlPFC, demonstrating that the vlPFC contains nodes for all three cognitive networks: VANet, DANet, and SNet. Thus, the vlPFC is in a position to switch between these three networks, pointing to its key role as an attentional hub. Its additional connections to the orbitofrontal, dorsolateral, and premotor cortices, place the vlPFC at the center for switching behaviors based on environmental stimuli, computing value, and cognitive control.

Citing Articles

Ventrolateral prefrontal cortex in macaques guides decisions in different learning contexts.

Fujimoto A, Elorette C, Fujimoto S, Fleysher L, Russ B, Rudebeck P bioRxiv. 2024; .

PMID: 39345480 PMC: 11429923. DOI: 10.1101/2024.09.18.613767.


Cross-species striatal hubs: Linking anatomy to resting-state connectivity.

Peng X, Trambaiolli L, Choi E, Lehman J, Linn G, Russ B Neuroimage. 2024; 301:120866.

PMID: 39322095 PMC: 11682661. DOI: 10.1016/j.neuroimage.2024.120866.


Dorsal Anterior Cingulate Cortex Coordinates Contextual Mental Imagery for Single-Beat Manipulation during Rhythmic Sensorimotor Synchronization.

Uemura M, Katagiri Y, Imai E, Kawahara Y, Otani Y, Ichinose T Brain Sci. 2024; 14(8).

PMID: 39199452 PMC: 11352649. DOI: 10.3390/brainsci14080757.


Translation of monosynaptic circuits underlying amygdala fMRI neurofeedback training.

Trambaiolli L, Maffei C, Dann E, Biazoli Jr C, Bezgin G, Yendiki A Neuropsychopharmacology. 2024; 49(12):1839-1850.

PMID: 39103495 PMC: 11473645. DOI: 10.1038/s41386-024-01944-w.


Dissociable Representations of Decision Variables within Subdivisions of the Macaque Orbital and Ventrolateral Frontal Cortex.

Stoll F, Rudebeck P J Neurosci. 2024; 44(35).

PMID: 38991790 PMC: 11358530. DOI: 10.1523/JNEUROSCI.0464-24.2024.


References
1.
Badre D, Wagner A . Computational and neurobiological mechanisms underlying cognitive flexibility. Proc Natl Acad Sci U S A. 2006; 103(18):7186-91. PMC: 1459038. DOI: 10.1073/pnas.0509550103. View

2.
Murray E, Rudebeck P . Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat Rev Neurosci. 2018; 19(7):404-417. PMC: 6432632. DOI: 10.1038/s41583-018-0013-4. View

3.
Janes A, Farmer S, Peechatka A, Frederick B, Lukas S . Insula-Dorsal Anterior Cingulate Cortex Coupling is Associated with Enhanced Brain Reactivity to Smoking Cues. Neuropsychopharmacology. 2015; 40(7):1561-8. PMC: 4915269. DOI: 10.1038/npp.2015.9. View

4.
Stefanacci L, Amaral D . Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J Comp Neurol. 2000; 421(1):52-79. DOI: 10.1002/(sici)1096-9861(20000522)421:1<52::aid-cne4>3.0.co;2-o. View

5.
Choi E, Ding S, Haber S . Combinatorial Inputs to the Ventral Striatum from the Temporal Cortex, Frontal Cortex, and Amygdala: Implications for Segmenting the Striatum. eNeuro. 2017; 4(6). PMC: 5740454. DOI: 10.1523/ENEURO.0392-17.2017. View