6.
Vedrine J
. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem. 2018; 12(3):577-588.
DOI: 10.1002/cssc.201802248.
View
7.
Pacchioni G
. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys Chem Chem Phys. 2013; 15(6):1737-57.
DOI: 10.1039/c2cp43731g.
View
8.
Wei C, Sun S, Mandler D, Wang X, Qiao S, Xu Z
. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. 2019; 48(9):2518-2534.
DOI: 10.1039/c8cs00848e.
View
9.
Zhao Q, Yan Z, Chen C, Chen J
. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem Rev. 2017; 117(15):10121-10211.
DOI: 10.1021/acs.chemrev.7b00051.
View
10.
Li C, Han X, Cheng F, Hu Y, Chen C, Chen J
. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat Commun. 2015; 6:7345.
PMC: 4468846.
DOI: 10.1038/ncomms8345.
View
11.
Zhang M, de Respinis M, Frei H
. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem. 2014; 6(4):362-7.
DOI: 10.1038/nchem.1874.
View
12.
Li Q, Li H, Xia Q, Hu Z, Zhu Y, Yan S
. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2020; 20(1):76-83.
DOI: 10.1038/s41563-020-0756-y.
View
13.
Jang Y, Lee J
. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes. ChemSusChem. 2019; 12(9):1835-1845.
DOI: 10.1002/cssc.201802596.
View
14.
Chen T, Li S, Ma L, Zhao X, Fang G
. Aldehyde reduced CoO to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors. Nanotechnology. 2019; 30(39):395403.
DOI: 10.1088/1361-6528/ab2a83.
View
15.
Li S, Xu J, Ma Z, Zhang S, Wen X, Yu X
. NiMnO as an efficient cathode catalyst for rechargeable lithium-air batteries. Chem Commun (Camb). 2017; 53(58):8164-8167.
DOI: 10.1039/c7cc01995e.
View
16.
Cao S, Tao F, Tang Y, Li Y, Yu J
. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev. 2016; 45(17):4747-65.
DOI: 10.1039/c6cs00094k.
View
17.
Zhang J, Chen X, Shen Y, Li Y, Hu Z, Chu J
. Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys Chem Chem Phys. 2011; 13(28):13096-105.
DOI: 10.1039/c0cp02924f.
View
18.
Bajdich M, Garcia-Mota M, Vojvodic A, Norskov J, Bell A
. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc. 2013; 135(36):13521-30.
DOI: 10.1021/ja405997s.
View
19.
Brown Jr G, Henrich V, Casey W, Clark D, Eggleston C, Felmy A
. Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. Chem Rev. 2002; 99(1):77-174.
DOI: 10.1021/cr980011z.
View
20.
Wang L, Yu Y, He H, Zhang Y, Qin X, Wang B
. Oxygen vacancy clusters essential for the catalytic activity of CeO nanocubes for o-xylene oxidation. Sci Rep. 2017; 7(1):12845.
PMC: 5634409.
DOI: 10.1038/s41598-017-13178-6.
View