» Articles » PMID: 35480490

Impact of Noise and Background on Measurement Uncertainties in Luminescence Thermometry

Overview
Journal ACS Photonics
Date 2022 Apr 28
PMID 35480490
Authors
Affiliations
Soon will be listed here.
Abstract

Materials with temperature-dependent luminescence can be used as local thermometers when incorporated in, for example, a biological environment or chemical reactor. Researchers have continuously developed new materials aiming for the highest sensitivity of luminescence to temperature. Although the comparison of luminescent materials based on their temperature sensitivity is convenient, this parameter gives an incomplete description of the potential performance of the materials in applications. Here, we demonstrate how the precision of a temperature measurement with luminescent nanocrystals depends not only on the temperature sensitivity of the nanocrystals but also on their luminescence strength compared to measurement noise and background signal. After first determining the noise characteristics of our instrumentation, we show how the uncertainty of a temperature measurement can be predicted quantitatively. Our predictions match the temperature uncertainties that we extract from repeated measurements, over a wide temperature range (303-473 K), for different CCD readout settings, and for different background levels. The work presented here is the first study that incorporates all of these practical issues to accurately calculate the uncertainty of luminescent nanothermometers. This method will be important for the optimization and development of luminescent nanothermometers.

Citing Articles

Multimodal Temperature Readout Boosts the Performance of CuInS/ZnS Quantum Dot Nanothermometers.

Duda M, Joshi P, Borodziuk A, Sobczak K, Sikora-Dobrowolska B, Mackowski S ACS Appl Mater Interfaces. 2024; 16(44):60008-60017.

PMID: 39437320 PMC: 11551904. DOI: 10.1021/acsami.4c14541.


Rise and Decay of Photoluminescence in Upconverting Lanthanide-Doped Nanocrystals.

Vonk S, Maris J, Dekker A, de Wit J, van Swieten T, Cocina A ACS Nano. 2024; 18(41):28325-28334.

PMID: 39368106 PMC: 11483940. DOI: 10.1021/acsnano.4c09945.


Improper Background Treatment Underestimates Thermometric Performance of Rare Earth Vanadate and Phosphovanadate Nanocrystals.

Vieira Perrella R, Derroso G, de Sousa Filho P ACS Omega. 2024; 9(32):34974-34980.

PMID: 39157115 PMC: 11325507. DOI: 10.1021/acsomega.4c04835.


High-sensitivity luminescent temperature sensors: MFX:1%Sm (M = Sr, Ba, X = Cl, Br).

Cui L, Dong Z, Yu D, Wang Y, Meijerink A Sci Adv. 2024; 10(33):eado7737.

PMID: 39141722 PMC: 11323894. DOI: 10.1126/sciadv.ado7737.


Luminescence Thermometry Beyond the Biological Realm.

Harrington B, Ye Z, Signor L, Pickel A ACS Nanosci Au. 2024; 4(1):30-61.

PMID: 38406316 PMC: 10885336. DOI: 10.1021/acsnanoscienceau.3c00051.


References
1.
Hartman T, Geitenbeek R, Wondergem C, van der Stam W, Weckhuysen B . Nanoscale Sensors in Catalysis: All Eyes on Catalyst Particles. ACS Nano. 2020; 14(4):3725-3735. PMC: 7199205. DOI: 10.1021/acsnano.9b09834. View

2.
van Swieten T, van Omme T, van den Heuvel D, Vonk S, Spruit R, Meirer F . Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. ACS Appl Nano Mater. 2021; 4(4):4208-4215. PMC: 8162758. DOI: 10.1021/acsanm.1c00657. View

3.
Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U . NaYF :Yb,Er/NaYF Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew Chem Int Ed Engl. 2018; 57(28):8765-8769. DOI: 10.1002/anie.201803083. View

4.
Wang Z, Christiansen J, Wezendonk D, Xie X, van Huis M, Meijerink A . Thermal enhancement and quenching of upconversion emission in nanocrystals. Nanoscale. 2019; 11(25):12188-12197. DOI: 10.1039/c9nr02271f. View

5.
Xu M, Zou X, Su Q, Yuan W, Cao C, Wang Q . Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat Commun. 2018; 9(1):2698. PMC: 6043590. DOI: 10.1038/s41467-018-05160-1. View