» Articles » PMID: 35480181

Unsymmetrical Pentamethine Cyanines for Visualizing Physiological Acidities from the Whole-animal to the Cellular Scale with PH-responsive Deep-red Fluorescence

Overview
Journal RSC Adv
Specialty Chemistry
Date 2022 Apr 28
PMID 35480181
Authors
Affiliations
Soon will be listed here.
Abstract

Acidity plays an important role in numerous physiological and pathological events. Non-invasively monitoring pH dynamics would be valuable for understanding pathological processes and optimizing therapeutic strategies. Although numerous near-infrared (NIR) fluorophores have been developed to monitor acidification , the experimental results are difficult to verify at the molecular or cellular level using a fluorescence microscope or flow cytometer due to the lack of lasers with excitation wavelengths in the NIR wavelength range. This work presents a sequential condensation strategy for obtaining unsymmetrical pentamethine cyanines with fine-tuned p values and improved yields. These deep-red fluorophores with pH responsiveness can not only be used to monitor acidification in live cells using confocal microscopic imaging and flow cytometry, but they can also be used to non-invasively identify infected tissue with a low pH value in live mouse models. In addition, the acidity in infected tissue slices was verified under a conventional confocal microscope. Overall, this work demonstrates a new synthetic method with improved yields for unsymmetrical pentamethine cyanines that can report acidity. These pH-responsive deep-red fluorophores not only provide new tools for accessing pH-associated physiological and pathological events, but they can also help in understanding imaging results at the molecular or cellular level due to their detectability by multiple imaging instruments.

Citing Articles

The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications.

Gao Y, Lei Z Anal Bioanal Chem. 2022; 415(18):3789-3797.

PMID: 36445453 DOI: 10.1007/s00216-022-04463-z.

References
1.
Xue F, Wen Y, Wei P, Gao Y, Zhou Z, Xiao S . A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy. Chem Commun (Camb). 2017; 53(48):6424-6427. DOI: 10.1039/c7cc03168h. View

2.
Han J, Burgess K . Fluorescent indicators for intracellular pH. Chem Rev. 2009; 110(5):2709-28. DOI: 10.1021/cr900249z. View

3.
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell H, Ibrahim-Hashim A . Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013; 73(5):1524-35. PMC: 3594450. DOI: 10.1158/0008-5472.CAN-12-2796. View

4.
Pisoni D, Todeschini L, Borges A, Petzhold C, Rodembusch F, Campo L . Symmetrical and asymmetrical cyanine dyes. Synthesis, spectral properties, and BSA association study. J Org Chem. 2014; 79(12):5511-20. DOI: 10.1021/jo500657s. View

5.
Han L, Duan W, Li X, Wang C, Jin Z, Zhai Y . Surface-Enhanced Resonance Raman Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models. ACS Appl Mater Interfaces. 2019; 11(17):15241-15250. DOI: 10.1021/acsami.9b00227. View