» Articles » PMID: 35469069

Swarm Learning for Decentralized Artificial Intelligence in Cancer Histopathology

Abstract

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.

Citing Articles

Integrating blockchain technology with artificial intelligence for the diagnosis of tibial plateau fractures.

Xie Y, Chen X, Yang H, Wang H, Zhou H, Lu L Eur J Trauma Emerg Surg. 2025; 51(1):119.

PMID: 39984717 DOI: 10.1007/s00068-025-02793-y.


Assessing Genotype-Phenotype Correlations with Deep Learning in Colorectal Cancer: A Multi-Centric Study.

Gustav M, van Treeck M, Reitsam N, Carrero Z, Loeffler C, Loeffler C medRxiv. 2025; .

PMID: 39973981 PMC: 11838662. DOI: 10.1101/2025.02.04.25321660.


Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging.

Saldanha O, Zhu J, Muller-Franzes G, Carrero Z, Payne N, Escudero Sanchez L Commun Med (Lond). 2025; 5(1):38.

PMID: 39915630 PMC: 11802753. DOI: 10.1038/s43856-024-00722-5.


autoimmune hepatitis? - Summary of the 5 international autoimmune hepatitis group research workshop 2024.

Engel B, Assis D, Bhat M, Clusmann J, Drenth J, Gerussi A JHEP Rep. 2025; 7(2):101265.

PMID: 39897612 PMC: 11783120. DOI: 10.1016/j.jhepr.2024.101265.


Machine learning methods for histopathological image analysis: Updates in 2024.

Komura D, Ochi M, Ishikawa S Comput Struct Biotechnol J. 2025; 27:383-400.

PMID: 39897057 PMC: 11786909. DOI: 10.1016/j.csbj.2024.12.033.


References
1.
Kleppe A, Skrede O, de Raedt S, Liestol K, Kerr D, Danielsen H . Designing deep learning studies in cancer diagnostics. Nat Rev Cancer. 2021; 21(3):199-211. DOI: 10.1038/s41568-020-00327-9. View

2.
Boehm K, Khosravi P, Vanguri R, Gao J, Shah S . Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer. 2021; 22(2):114-126. PMC: 8810682. DOI: 10.1038/s41568-021-00408-3. View

3.
Echle A, Rindtorff N, Brinker T, Luedde T, Pearson A, Kather J . Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 2020; 124(4):686-696. PMC: 7884739. DOI: 10.1038/s41416-020-01122-x. View

4.
Elemento O, Leslie C, Lundin J, Tourassi G . Artificial intelligence in cancer research, diagnosis and therapy. Nat Rev Cancer. 2021; 21(12):747-752. DOI: 10.1038/s41568-021-00399-1. View

5.
Benjamens S, Dhunnoo P, Mesko B . The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020; 3:118. PMC: 7486909. DOI: 10.1038/s41746-020-00324-0. View