Genotyping-by-Sequencing Based Molecular Genetic Diversity of Pakistani Bread Wheat ( L.) Accessions
Overview
Authors
Affiliations
Spring wheat ( L.) is one of the most imperative staple food crops, with an annual production of 765 million tons globally to feed ∼40% world population. Genetic diversity in available germplasm is crucial for sustainable wheat improvement to ensure global food security. A diversity panel of 184 Pakistani wheat accessions was genotyped using 123,596 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing with 42% of the SNPs mapped on B, 36% on A, and 22% on D sub-genomes of wheat. Chromosome 2B contains the most SNPs (9,126), whereas 4D has the least (2,660) markers. The mean polymorphic information content, genetic diversity, and major allele frequency of the population were 0.157, 0.1844, and 0.87, respectively. Analysis of molecular variance revealed a higher genetic diversity (80%) within the sub-population than among the sub-populations (20%). The genome-wide linkage disequilibrium was 0.34 Mbp for the whole wheat genome. Among the three subgenomes, A has the highest LD decay value (0.29 Mbp), followed by B (0.2 Mbp) and D (0.07 Mbp) genomes, respectively. The results of population structure, principal coordinate analysis, phylogenetic tree, and kinship analysis also divided the whole population into three clusters comprising 31, 33, and 120 accessions in group 1, group 2, and group 3, respectively. All groups were dominated by the local wheat accessions. Estimation of genetic diversity will be a baseline for the selection of breeding parents for mutations and the genome-wide association and marker-assisted selection studies.
Subbulakshmi K, Karthikeyan A, Murukarthick J, Dhasarathan M, Naveen R, Sathya M Planta. 2024; 260(3):57.
PMID: 39039303 DOI: 10.1007/s00425-024-04487-y.
An SNP based genotyping assay for genes associated with drought tolerance in bread wheat.
Rauf A, Sher M, Farooq U, Rasheed A, Sajjad M, Jing R Mol Biol Rep. 2024; 51(1):527.
PMID: 38637351 DOI: 10.1007/s11033-024-09481-x.