6.
Zhang P, OConnor D, Wang Y, Jiang L, Xia T, Wang L
. A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater. 2019; 384:121286.
DOI: 10.1016/j.jhazmat.2019.121286.
View
7.
Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W
. An overview on engineering the surface area and porosity of biochar. Sci Total Environ. 2021; 763:144204.
DOI: 10.1016/j.scitotenv.2020.144204.
View
8.
Li X, Shen Q, Zhang D, Mei X, Ran W, Xu Y
. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional (13)C NMR Correlation Spectroscopy. PLoS One. 2013; 8(6):e65949.
PMC: 3686859.
DOI: 10.1371/journal.pone.0065949.
View
9.
Bai X, Zhang Y, Shi J, Xu L, Wang Y, Jin P
. A new application pattern for sludge-derived biochar adsorbent: Ideal persulfate activator for the high-efficiency mineralization of pollutants. J Hazard Mater. 2021; 419:126343.
DOI: 10.1016/j.jhazmat.2021.126343.
View
10.
Zhu Y, Yi B, Yuan Q, Wu Y, Wang M, Yan S
. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Adv. 2022; 8(36):19917-19929.
PMC: 9080784.
DOI: 10.1039/c8ra03018a.
View
11.
Sud D, Mahajan G, Kaur M
. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour Technol. 2008; 99(14):6017-27.
DOI: 10.1016/j.biortech.2007.11.064.
View
12.
Liang S, Guo X, Feng N, Tian Q
. Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J Hazard Mater. 2009; 174(1-3):756-62.
DOI: 10.1016/j.jhazmat.2009.09.116.
View
13.
El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A
. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. J Hazard Mater. 2008; 161(1):102-10.
DOI: 10.1016/j.jhazmat.2008.03.060.
View
14.
Sun L, Chen D, Wan S, Yu Z
. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour Technol. 2015; 198:300-8.
DOI: 10.1016/j.biortech.2015.09.026.
View
15.
Ma Y, Wu L, Li P, Yang L, He L, Chen S
. A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal. J Hazard Mater. 2020; 407:124777.
DOI: 10.1016/j.jhazmat.2020.124777.
View
16.
Chen Y, Lin Y, Ho S, Zhou Y, Ren N
. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour Technol. 2018; 259:104-110.
DOI: 10.1016/j.biortech.2018.02.094.
View
17.
Shin J, Lee Y, Lee S, Kim S, Ochir D, Park Y
. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. J Hazard Mater. 2020; 400:123102.
DOI: 10.1016/j.jhazmat.2020.123102.
View
18.
Zeng H, Qi W, Zhai L, Wang F, Zhang J, Li D
. Preparation and Characterization of Sludge-Based Magnetic Biochar by Pyrolysis for Methylene Blue Removal. Nanomaterials (Basel). 2021; 11(10).
PMC: 8539958.
DOI: 10.3390/nano11102473.
View
19.
Dawood S, Sen T, Phan C
. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresour Technol. 2017; 246:76-81.
DOI: 10.1016/j.biortech.2017.07.019.
View
20.
Xu Y, Liu Y, Liu S, Tan X, Zeng G, Zeng W
. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ Sci Pollut Res Int. 2016; 23(23):23606-23618.
DOI: 10.1007/s11356-016-7572-6.
View