Reymond J
J Cheminform. 2025; 17(1):6.
PMID: 39825400
PMC: 11740331.
DOI: 10.1186/s13321-025-00954-0.
Wellawatte G, Schwaller P
Commun Chem. 2025; 8(1):11.
PMID: 39809811
PMC: 11733140.
DOI: 10.1038/s42004-024-01393-y.
Raman K, Kumar R, Musante C, Madhavan S
Clin Transl Sci. 2025; 18(1):e70124.
PMID: 39797502
PMC: 11724156.
DOI: 10.1111/cts.70124.
Mehdi S, Tiwary P
Nat Commun. 2024; 15(1):7859.
PMID: 39251574
PMC: 11385982.
DOI: 10.1038/s41467-024-51970-x.
Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F
Nat Commun. 2024; 15(1):6305.
PMID: 39060305
PMC: 11282250.
DOI: 10.1038/s41467-024-50619-z.
Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling.
Zhang R, Nolte D, Sanchez-Villalobos C, Ghosh S, Pal R
Nat Commun. 2024; 15(1):5072.
PMID: 38871711
PMC: 11176398.
DOI: 10.1038/s41467-024-49372-0.
Augmenting large language models with chemistry tools.
M Bran A, Cox S, Schilter O, Baldassari C, White A, Schwaller P
Nat Mach Intell. 2024; 6(5):525-535.
PMID: 38799228
PMC: 11116106.
DOI: 10.1038/s42256-024-00832-8.
Systematic generation and analysis of counterfactuals for compound activity predictions using multi-task models.
Lamens A, Bajorath J
RSC Med Chem. 2024; 15(5):1547-1555.
PMID: 38784468
PMC: 11110787.
DOI: 10.1039/d4md00128a.
Identifying Substructures That Facilitate Compounds to Penetrate the Blood-Brain Barrier via Passive Transport Using Machine Learning Explainer Models.
Rosa L, Argolo C, Nascimento C, Pimentel A
ACS Chem Neurosci. 2024; 15(11):2144-2159.
PMID: 38723285
PMC: 11157485.
DOI: 10.1021/acschemneuro.3c00840.
An ensemble machine learning model generates a focused screening library for the identification of CDK8 inhibitors.
Lin T, Yen D, HuangFu W, Wu Y, Hsu J, Yen S
Protein Sci. 2024; 33(6):e5007.
PMID: 38723187
PMC: 11081523.
DOI: 10.1002/pro.5007.
Artificial design of organic emitters a genetic algorithm enhanced by a deep neural network.
Nigam A, Pollice R, Friederich P, Aspuru-Guzik A
Chem Sci. 2024; 15(7):2618-2639.
PMID: 38362419
PMC: 10866360.
DOI: 10.1039/d3sc05306g.
Active learning of the thermodynamics-dynamics trade-off in protein condensates.
An Y, Webb M, Jacobs W
Sci Adv. 2024; 10(1):eadj2448.
PMID: 38181073
PMC: 10775998.
DOI: 10.1126/sciadv.adj2448.
Recent advances in the self-referencing embedded strings (SELFIES) library.
Lo A, Pollice R, Nigam A, White A, Krenn M, Aspuru-Guzik A
Digit Discov. 2023; 2(4):897-908.
PMID: 38013816
PMC: 10408573.
DOI: 10.1039/d3dd00044c.
An explainability framework for deep learning on chemical reactions exemplified by enzyme-catalysed reaction classification.
Probst D
J Cheminform. 2023; 15(1):113.
PMID: 37996942
PMC: 10668483.
DOI: 10.1186/s13321-023-00784-y.
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values.
Lamens A, Bajorath J
Molecules. 2023; 28(14).
PMID: 37513472
PMC: 10383571.
DOI: 10.3390/molecules28145601.
Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review.
Niazi S, Mariam Z
Int J Mol Sci. 2023; 24(14).
PMID: 37511247
PMC: 10380192.
DOI: 10.3390/ijms241411488.
Explaining compound activity predictions with a substructure-aware loss for graph neural networks.
Amara K, Rodriguez-Perez R, Jimenez-Luna J
J Cheminform. 2023; 15(1):67.
PMID: 37491407
PMC: 10369817.
DOI: 10.1186/s13321-023-00733-9.
Open-Source Machine Learning in Computational Chemistry.
Hagg A, Kirschner K
J Chem Inf Model. 2023; 63(15):4505-4532.
PMID: 37466636
PMC: 10430767.
DOI: 10.1021/acs.jcim.3c00643.
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking.
Wu Z, Wang J, Du H, Jiang D, Kang Y, Li D
Nat Commun. 2023; 14(1):2585.
PMID: 37142585
PMC: 10160109.
DOI: 10.1038/s41467-023-38192-3.
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis.
Siemers F, Bajorath J
Sci Rep. 2023; 13(1):5983.
PMID: 37045972
PMC: 10097675.
DOI: 10.1038/s41598-023-33215-x.