6.
Glover T, Peterson G, DeCoste J, Browe M
. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide. Langmuir. 2012; 28(28):10478-87.
DOI: 10.1021/la302118h.
View
7.
Liu Y, Klet R, Hupp J, Farha O
. Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem Commun (Camb). 2016; 52(50):7806-9.
DOI: 10.1039/c6cc03727e.
View
8.
Ghosh P, Colon Y, Snurr R
. Water adsorption in UiO-66: the importance of defects. Chem Commun (Camb). 2014; 50(77):11329-31.
DOI: 10.1039/c4cc04945d.
View
9.
Vermoortele F, Vandichel M, Van de Voorde B, Ameloot R, Waroquier M, Van Speybroeck V
. Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. Angew Chem Int Ed Engl. 2012; 51(20):4887-90.
DOI: 10.1002/anie.201108565.
View
10.
Wang P, Bai S, Zhao J, Su P, Yang Q, Li C
. Bifunctionalized hollow nanospheres for the one-pot synthesis of methyl isobutyl ketone from acetone. ChemSusChem. 2012; 5(12):2390-6.
DOI: 10.1002/cssc.201200383.
View
11.
Trickett C, Gagnon K, Lee S, Gandara F, Burgi H, Yaghi O
. Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl. 2015; 54(38):11162-7.
DOI: 10.1002/anie.201505461.
View
12.
Hao L, Li X, Hurlock M, Tu X, Zhang Q
. Hierarchically porous UiO-66: facile synthesis, characterization and application. Chem Commun (Camb). 2018; 54(83):11817-11820.
DOI: 10.1039/c8cc05895d.
View
13.
Chen L, Luque R, Li Y
. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev. 2017; 46(15):4614-4630.
DOI: 10.1039/c6cs00537c.
View
14.
Fei H, Cohen S
. A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. Chem Commun (Camb). 2014; 50(37):4810-2.
DOI: 10.1039/c4cc01607f.
View
15.
Ye G, Zhang D, Li X, Leng K, Zhang W, Ma J
. Boosting Catalytic Performance of Metal-Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS Appl Mater Interfaces. 2017; 9(40):34937-34943.
DOI: 10.1021/acsami.7b10337.
View
16.
Wu H, Chua Y, Krungleviciute V, Tyagi M, Chen P, Yildirim T
. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc. 2013; 135(28):10525-32.
DOI: 10.1021/ja404514r.
View
17.
Gutov O, Gonzalez Hevia M, Escudero-Adan E, Shafir A
. Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Inorg Chem. 2015; 54(17):8396-400.
DOI: 10.1021/acs.inorgchem.5b01053.
View
18.
Bai Y, Dou Y, Xie L, Rutledge W, Li J, Zhou H
. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev. 2016; 45(8):2327-67.
DOI: 10.1039/c5cs00837a.
View
19.
Bueken B, Van Velthoven N, Willhammar T, Stassin T, Stassen I, Keen D
. Gel-based morphological design of zirconium metal-organic frameworks. Chem Sci. 2017; 8(5):3939-3948.
PMC: 5433495.
DOI: 10.1039/c6sc05602d.
View
20.
Yuan L, Tian M, Lan J, Cao X, Wang X, Chai Z
. Defect engineering in metal-organic frameworks: a new strategy to develop applicable actinide sorbents. Chem Commun (Camb). 2017; 54(4):370-373.
DOI: 10.1039/c7cc07527h.
View