» Articles » PMID: 3541901

Structural and Functional Relationships Between Fumarase and Aspartase. Nucleotide Sequences of the Fumarase (fumC) and Aspartase (aspA) Genes of Escherichia Coli K12

Overview
Journal Biochem J
Specialty Biochemistry
Date 1986 Jul 15
PMID 3541901
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The nucleotide sequences of two segments of DNA (2250 and 2921 base-pairs) containing the functionally related fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12 were determined. The fumC structural gene comprises 1398 base-pairs (466 codons, excluding the initiation codon), and it encodes a polypeptide of Mr 50353 that resembles the fumarases of Bacillus subtilis 168 (citG-gene product), rat liver and pig heart. The fumC gene starts 140 base-pairs downstream of the structurally-unrelated fumA gene, but there is no evidence that both genes form part of the same operon. The aspA structural gene comprises 1431 base-pairs (477 codons excluding the initiation codon), and it encodes a polypeptide of Mr 52190, similar to that predicted from maxicell studies and for the enzyme from E. coli W. Remarkable homologies were found between the primary structures of the fumarase (fumC and citG) and aspartase (aspA) genes and their products, suggesting close structural and evolutionary relationships.

Citing Articles

Toward a Comprehensive Analysis of Posttranscriptional Regulatory Networks: a New Tool for the Identification of Small RNA Regulators of Specific mRNAs.

Han K, Lory S mBio. 2021; 12(1).

PMID: 33622723 PMC: 8545128. DOI: 10.1128/mBio.03608-20.


Role of aspartate ammonia-lyase in Pasteurella multocida.

Wang Z, Li L, Liu P, Wang C, Lu Q, Liu L BMC Microbiol. 2020; 20(1):369.

PMID: 33272193 PMC: 7713322. DOI: 10.1186/s12866-020-02049-2.


Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution.

Katayama N, Takeya M, Osanai T Sci Rep. 2019; 9(1):10629.

PMID: 31337820 PMC: 6650407. DOI: 10.1038/s41598-019-47025-7.


Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer.

Yu H, Wang F, Yu F, Zeng Z, Wang Y, Lu Y Cell Death Dis. 2019; 10(6):413.

PMID: 31138787 PMC: 6538639. DOI: 10.1038/s41419-019-1652-8.


C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

Unden G, Strecker A, Kleefeld A, Kim O EcoSal Plus. 2016; 7(1).

PMID: 27415771 PMC: 11575717. DOI: 10.1128/ecosalplus.ESP-0021-2015.


References
1.
Rosenberg M, Court D . Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979; 13:319-53. DOI: 10.1146/annurev.ge.13.120179.001535. View

2.
Spencer M, Guest J . Transcription analysis of the sucAB, aceEF and lpd genes of Escherichia coli. Mol Gen Genet. 1985; 200(1):145-54. DOI: 10.1007/BF00383328. View

3.
Grosjean H, Fiers W . Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982; 18(3):199-209. DOI: 10.1016/0378-1119(82)90157-3. View

4.
Guest J, Miles J, Roberts R, Woods S . The fumarase genes of Escherichia coli: location of the fumB gene and discovery of a new gene (fumC). J Gen Microbiol. 1985; 131(11):2971-84. DOI: 10.1099/00221287-131-11-2971. View

5.
Kobayashi K, Tuboi S . End group analysis of the cytosolic and mitochondrial fumarases from rat liver. J Biochem. 1983; 94(3):707-13. DOI: 10.1093/oxfordjournals.jbchem.a134410. View