6.
Giger W, Blumer M
. Polycyclic aromatic hydrocarbons in the environment: isolation and characterization by chromatography, visible, ultraviolet, and mass spectrometry. Anal Chem. 1974; 46(12):1663-71.
DOI: 10.1021/ac60348a036.
View
7.
Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M
. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol. 2016; 218:388-96.
DOI: 10.1016/j.biortech.2016.06.096.
View
8.
WEBER F, Hage K, de Bont J
. Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microbiol. 1995; 61(10):3562-6.
PMC: 167650.
DOI: 10.1128/aem.61.10.3562-3566.1995.
View
9.
de Boer W, Folman L, Summerbell R, Boddy L
. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005; 29(4):795-811.
DOI: 10.1016/j.femsre.2004.11.005.
View
10.
Bolyen E, Rideout J, Dillon M, Bokulich N, Abnet C, Al-Ghalith G
. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37(8):852-857.
PMC: 7015180.
DOI: 10.1038/s41587-019-0209-9.
View
11.
Itah A, Brooks A, Ogar B, Okure A
. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems. Bull Environ Contam Toxicol. 2009; 83(3):318-27.
DOI: 10.1007/s00128-009-9770-0.
View
12.
Luykx D, Prenafeta-Boldu F, de Bont J
. Toluene monooxygenase from the fungus Cladosporium sphaerospermum. Biochem Biophys Res Commun. 2003; 312(2):373-9.
DOI: 10.1016/j.bbrc.2003.10.128.
View
13.
Harms H, Schlosser D, Wick L
. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011; 9(3):177-92.
DOI: 10.1038/nrmicro2519.
View
14.
Bar-On Y, Phillips R, Milo R
. The biomass distribution on Earth. Proc Natl Acad Sci U S A. 2018; 115(25):6506-6511.
PMC: 6016768.
DOI: 10.1073/pnas.1711842115.
View
15.
Bourceret A, Cebron A, Tisserant E, Poupin P, Bauda P, Beguiristain T
. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Microb Ecol. 2015; 71(3):711-24.
DOI: 10.1007/s00248-015-0682-8.
View
16.
Nagahama T, Nagano Y
. Cultured and uncultured fungal diversity in deep-sea environments. Prog Mol Subcell Biol. 2012; 53:173-87.
DOI: 10.1007/978-3-642-23342-5_9.
View
17.
Costa F, Silva N, Voidaleski M, Weiss V, Moreno L, Schneider G
. Environmental prospecting of black yeast-like agents of human disease using culture-independent methodology. Sci Rep. 2020; 10(1):14229.
PMC: 7450056.
DOI: 10.1038/s41598-020-70915-0.
View
18.
Scheller U, Zimmer T, Becher D, Schauer F, Schunck W
. Oxygenation cascade in conversion of n-alkanes to alpha,omega-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem. 1998; 273(49):32528-34.
DOI: 10.1074/jbc.273.49.32528.
View
19.
Robinson J, Isikhuemhen O, Anike F
. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel). 2021; 7(3).
PMC: 8003315.
DOI: 10.3390/jof7030225.
View
20.
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G
. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mater. 2020; 402:123919.
DOI: 10.1016/j.jhazmat.2020.123919.
View