» Articles » PMID: 35412809

AutomRm: An R Package for Fully Automatic LC-QQQ-MS Data Preprocessing Powered by Machine Learning

Overview
Journal Anal Chem
Specialty Chemistry
Date 2022 Apr 12
PMID 35412809
Authors
Affiliations
Soon will be listed here.
Abstract

Preprocessing of liquid chromatography-mass spectrometry (LC-MS) raw data facilitates downstream statistical and biological data analyses. In the case of targeted LC-MS data, consistent recognition of chromatographic peaks is a main challenge, in particular, for low abundant signals. Fully automatic preprocessing is faster than manual peak review and does not depend on the individual operator. Here, we present the R package automRm for fully automatic preprocessing of LC-MS data recorded in MRM mode. Using machine learning (ML) for detection of chromatographic peaks and quality control of reported results enables the automatic recognition of complex patterns in raw data. In addition, this approach renders automRm generally applicable to a wide range of analytical methods including hydrophilic interaction liquid chromatography (HILIC), which is known for sample-to-sample variations in peak shape and retention time. We demonstrate the impact of the choice of training data set, of the applied ML algorithm, and of individual peak characteristics on automRm's ability to correctly report chromatographic peaks. Next, we show that automRm can replicate results obtained by manual peak review on published data. Moreover, automRm outperforms alternative software solutions regarding the variation in peak integration among replicate measurements and the number of correctly reported peaks when applied to a HILIC-MS data set. The R package is freely available from gitlab (https://gitlab.gwdg.de/joerg.buescher/automrm).

Citing Articles

High throughput spatial immune mapping reveals an innate immune scar in post-COVID-19 brains.

Schwabenland M, Hasavci D, Frase S, Wolf K, Deigendesch N, Buescher J Acta Neuropathol. 2024; 148(1):11.

PMID: 39060438 PMC: 11281987. DOI: 10.1007/s00401-024-02770-6.


Medcheck: a novel software for automated de-formulation of traditional Chinese medicine (TCM) prescriptions by liquid chromatography-mass spectrometry.

Li X, Zhang J, Li Y, Shen X, Yang H, Yang L J Pharm Anal. 2024; 14(6):100958.

PMID: 39005840 PMC: 11246044. DOI: 10.1016/j.jpha.2024.02.012.


Recent Developments in Machine Learning for Mass Spectrometry.

Beck A, Muhoberac M, Randolph C, Beveridge C, Wijewardhane P, Kenttamaa H ACS Meas Sci Au. 2024; 4(3):233-246.

PMID: 38910862 PMC: 11191731. DOI: 10.1021/acsmeasuresciau.3c00060.


Systematic Evaluation of Chromatographic Peak Quality for Targeted Mass Spectrometry via Variational Autoencoder.

Yang C, Hsiao Y, Lee C, Yu J Anal Chem. 2024; .

PMID: 38336364 PMC: 10882576. DOI: 10.1021/acs.analchem.3c03686.


Prostaglandin E controls the metabolic adaptation of T cells to the intestinal microenvironment.

Villa M, Sanin D, Apostolova P, Corrado M, Kabat A, Cristinzio C Nat Commun. 2024; 15(1):451.

PMID: 38200005 PMC: 10781727. DOI: 10.1038/s41467-024-44689-2.


References
1.
Si-Hung L, Causon T, Hann S . Comparison of fully wettable RPLC stationary phases for LC-MS-based cellular metabolomics. Electrophoresis. 2017; 38(18):2287-2295. DOI: 10.1002/elps.201700157. View

2.
Bajad S, Lu W, Kimball E, Yuan J, Peterson C, Rabinowitz J . Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A. 2006; 1125(1):76-88. DOI: 10.1016/j.chroma.2006.05.019. View

3.
Tsugawa H, Kanazawa M, Ogiwara A, Arita M . MRMPROBS suite for metabolomics using large-scale MRM assays. Bioinformatics. 2014; 30(16):2379-80. DOI: 10.1093/bioinformatics/btu203. View

4.
Deng P, Li X, Petriello M, Wang C, Morris A, Hennig B . Application of metabolomics to characterize environmental pollutant toxicity and disease risks. Rev Environ Health. 2019; 34(3):251-259. PMC: 6915040. DOI: 10.1515/reveh-2019-0030. View

5.
Yang W, Sedlak M, Regnier F, Mosier N, Ho N, Adamec J . Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography-mass spectrometry and in vitro 13C labeling. Anal Chem. 2008; 80(24):9508-16. DOI: 10.1021/ac801693c. View