6.
Kumi-Barimah E, Penhale-Jones R, Salimian A, Upadhyaya H, Hasnath A, Jose G
. Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO thin films. Sci Rep. 2020; 10(1):10144.
PMC: 7311466.
DOI: 10.1038/s41598-020-67367-x.
View
7.
Pausova S, Kment S, Zlamal M, Baudys M, Hubicka Z, Krysa J
. Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates. Molecules. 2017; 22(5).
PMC: 6154507.
DOI: 10.3390/molecules22050775.
View
8.
Buttner P, Dohler D, Korenko S, Mohrlein S, Bochmann S, Vogel N
. Solid state interdigitated SbS based TiO nanotube solar cells. RSC Adv. 2022; 10(47):28225-28231.
PMC: 9055636.
DOI: 10.1039/d0ra04123h.
View
9.
Adhikari S, Shamsaldeen A, Andersson G
. The effect of TiCl treatment on the performance of dye-sensitized solar cells. J Chem Phys. 2019; 151(16):164704.
DOI: 10.1063/1.5125996.
View
10.
Sun L, Zhang S, Sun X, He X
. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J Nanosci Nanotechnol. 2010; 10(7):4551-61.
DOI: 10.1166/jnn.2010.1695.
View
11.
Shin K, Park J
. Highly Transparent Dual-Sensitized Titanium Dioxide Nanotube Arrays for Spontaneous Solar Water Splitting Tandem Configuration. ACS Appl Mater Interfaces. 2015; 7(33):18429-34.
DOI: 10.1021/acsami.5b04521.
View
12.
Sadek A, Zheng H, Latham K, Wlodarski W, Kalantar-Zadeh K
. Anodization of Ti thin film deposited on ITO. Langmuir. 2008; 25(1):509-14.
DOI: 10.1021/la802456r.
View
13.
Roy P, Kim D, Lee K, Spiecker E, Schmuki P
. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale. 2010; 2(1):45-59.
DOI: 10.1039/b9nr00131j.
View
14.
Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M
. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun (Camb). 2015; 51(88):15894-7.
DOI: 10.1039/c5cc06759f.
View
15.
Farsinezhad S, Mohammadpour A, Dalrymple A, Geisinger J, Kar P, Brett M
. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J Nanosci Nanotechnol. 2013; 13(4):2885-91.
DOI: 10.1166/jnn.2013.7409.
View
16.
Zhukova Y, Hiepen C, Knaus P, Osterland M, Prohaska S, Dunlop J
. The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration. Adv Healthc Mater. 2017; 6(15).
DOI: 10.1002/adhm.201601244.
View
17.
Chong B, Yu D, Jin R, Wang Y, Li D, Song Y
. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions. Nanotechnology. 2015; 26(14):145603.
DOI: 10.1088/0957-4484/26/14/145603.
View
18.
Mavridi-Printezi A, Menichetti A, Guernelli M, Montalti M
. The Photophysics and Photochemistry of Melanin- Like Nanomaterials Depend on Morphology and Structure. Chemistry. 2021; 27(66):16309-16319.
PMC: 9291563.
DOI: 10.1002/chem.202102479.
View
19.
Bjelajac A, Petrovic R, Djokic V, Matolin V, Vondracek M, Dembele K
. Enhanced absorption of TiO nanotubes by N-doping and CdS quantum dots sensitization: insight into the structure. RSC Adv. 2022; 8(61):35073-35082.
PMC: 9087307.
DOI: 10.1039/c8ra06341a.
View
20.
Gong T, Li C, Li X, Yue H, Zhu X, Zhao Z
. Evidence of oxygen bubbles forming nanotube embryos in porous anodic oxides. Nanoscale Adv. 2022; 3(16):4659-4668.
PMC: 9417053.
DOI: 10.1039/d1na00389e.
View