Apelin Resistance Contributes to Muscle Loss During Cancer Cachexia in Mice
Overview
Authors
Affiliations
Cancer cachexia consists of dramatic body weight loss with rapid muscle depletion due to imbalanced protein homeostasis. We found that the mRNA levels of apelin decrease in muscles from cachectic hepatoma-bearing rats and three mouse models of cachexia. Furthermore, expression inversely correlates with in muscle biopsies from cancer patients. To shed light on the possible role of apelin in cachexia in vivo, we generated apelin 13 carrying all the last 13 amino acids of apelin in D isomers, ultimately extending plasma stability. Notably, apelin D-peptides alter cAMP-based signaling in vitro as the L-peptides, supporting receptor binding. In vitro apelin 13 protects myotube diameter from dexamethasone-induced atrophy, restrains rates of degradation of long-lived proteins and expression, but fails to protect mice from atrophy. D-apelin 13 given intraperitoneally for 13 days in colon adenocarcinoma C26-bearing mice does not reduce catabolic pathways in muscles, as it does in vitro. Puzzlingly, the levels of circulating apelin seemingly deriving from cachexia-inducing tumors, increase in murine plasma during cachexia. Muscle electroporation of a plasmid expressing its receptor APJ, unlike apelin, preserves myofiber area from C26-induced atrophy, supporting apelin resistance in vivo. Altogether, we believe that during cachexia apelin resistance occurs, contributing to muscle wasting and nullifying any possible peptide-based treatment.
Marina A, Koutsoulidou A, Natera-de Benito D, Tykocinski L, Tomazou M, Georgiou K Acta Neuropathol Commun. 2025; 13(1):29.
PMID: 39948634 PMC: 11823195. DOI: 10.1186/s40478-025-01946-9.
Tarum J, Ball G, Gustafsson T, Altun M, Santos L J Cachexia Sarcopenia Muscle. 2024; 15(5):2143-2155.
PMID: 39210538 PMC: 11446686. DOI: 10.1002/jcsm.13562.
Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists.
Liu Q Front Endocrinol (Lausanne). 2024; 15:1431292.
PMID: 39114288 PMC: 11304055. DOI: 10.3389/fendo.2024.1431292.
Organokines in COVID-19: A Systematic Review.
Barbalho S, Minniti G, Miola V, Dos Santos Haber J, Cincotto Dos Santos Bueno P, Santos de Argollo Haber L Cells. 2023; 12(10).
PMID: 37408184 PMC: 10216619. DOI: 10.3390/cells12101349.
Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene.
Ferrara M, Samaden M, Ruggieri E, Venereau E Front Cell Dev Biol. 2022; 10:960341.
PMID: 36158184 PMC: 9493094. DOI: 10.3389/fcell.2022.960341.