» Articles » PMID: 35399984

Learning New Physics from an Imperfect Machine

Overview
Publisher EDP Sciences
Date 2022 Apr 11
PMID 35399984
Authors
Affiliations
Soon will be listed here.
Abstract

We show how to deal with uncertainties on the Standard Model predictions in an agnostic new physics search strategy that exploits artificial neural networks. Our approach builds directly on the specific Maximum Likelihood ratio treatment of uncertainties as nuisance parameters for hypothesis testing that is routinely employed in high-energy physics. After presenting the conceptual foundations of our method, we first illustrate all aspects of its implementation and extensively study its performances on a toy one-dimensional problem. We then show how to implement it in a multivariate setup by studying the impact of two typical sources of experimental uncertainties in two-body final states at the LHC.

Citing Articles

Nanosecond anomaly detection with decision trees and real-time application to exotic Higgs decays.

Roche S, Bayer Q, Carlson B, Ouligian W, Serhiayenka P, Stelzer J Nat Commun. 2024; 15(1):3527.

PMID: 38664390 PMC: 11045859. DOI: 10.1038/s41467-024-47704-8.


Quantum anomaly detection for collider physics.

Alvi S, Bauer C, Nachman B J High Energy Phys. 2023; 2023(2):220.

PMID: 36852337 PMC: 9946862. DOI: 10.1007/JHEP02(2023)220.


Learning new physics efficiently with nonparametric methods.

Letizia M, Losapio G, Rando M, Grosso G, Wulzer A, Pierini M Eur Phys J C Part Fields. 2022; 82(10):879.

PMID: 36212113 PMC: 9534824. DOI: 10.1140/epjc/s10052-022-10830-y.


Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models.

Alvarez E, Spannowsky M, Szewc M Front Artif Intell. 2022; 5:852970.

PMID: 35372834 PMC: 8969742. DOI: 10.3389/frai.2022.852970.

References
1.
Chen C, Cerri O, Nguyen T, Vlimant J, Pierini M . Analysis-Specific Fast Simulation at the LHC with Deep Learning. Comput Softw Big Sci. 2021; 5(1):15. PMC: 8549944. DOI: 10.1007/s41781-021-00060-4. View

2.
Abbott B, Abdesselam A, Abolins M, Abramov V, Acharya B, Adams D . Quasi-model-independent search for new high p(T) physics at D0. Phys Rev Lett. 2001; 86(17):3712-7. DOI: 10.1103/PhysRevLett.86.3712. View

3.
Englert C, Galler P, Harris P, Spannowsky M . Machine learning uncertainties with adversarial neural networks. Eur Phys J C Part Fields. 2019; 79(1):4. PMC: 6390898. DOI: 10.1140/epjc/s10052-018-6511-8. View

4.
Collins J, Howe K, Nachman B . Anomaly Detection for Resonant New Physics with Machine Learning. Phys Rev Lett. 2019; 121(24):241803. DOI: 10.1103/PhysRevLett.121.241803. View

5.
Brehmer J, Louppe G, Pavez J, Cranmer K . Mining gold from implicit models to improve likelihood-free inference. Proc Natl Acad Sci U S A. 2020; 117(10):5242-5249. PMC: 7071889. DOI: 10.1073/pnas.1915980117. View