» Articles » PMID: 35392630

End-to-end Robust Joint Unsupervised Image Alignment and Clustering

Overview
Date 2022 Apr 8
PMID 35392630
Authors
Affiliations
Soon will be listed here.
Abstract

Computing dense pixel-to-pixel image correspondences is a fundamental task of computer vision. Often, the objective is to align image pairs from the same semantic category for manipulation or segmentation purposes. Despite achieving superior performance, existing deep learning alignment methods cannot cluster images; consequently, clustering and pairing images needed to be a separate laborious and expensive step. Given a dataset with diverse semantic categories, we propose a multi-task model, Jim-Net, that can directly learn to cluster and align images without any pixel-level or image-level annotations. We design a pair-matching alignment unsupervised training algorithm that selectively matches and aligns image pairs from the clustering branch. Our unsupervised Jim-Net achieves comparable accuracy with state-of-the-art supervised methods on benchmark 2D image alignment dataset PF-PASCAL. Specifically, we apply Jim-Net to cryo-electron tomography, a revolutionary 3D microscopy imaging technique of native subcellular structures. After extensive evaluation on seven datasets, we demonstrate that Jim-Net enables systematic discovery and recovery of representative macromolecular structures in situ, which is essential for revealing molecular mechanisms underlying cellular functions. To our knowledge, Jim-Net is the first end-to-end model that can simultaneously align and cluster images, which significantly improves the performance as compared to performing each task alone.

Citing Articles

The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography.

Galaz-Montoya J Front Mol Biosci. 2024; 11:1390858.

PMID: 38868297 PMC: 11167099. DOI: 10.3389/fmolb.2024.1390858.


DUAL: deep unsupervised simultaneous simulation and denoising for cryo-electron tomography.

Zeng X, Ding Y, Zhang Y, Rafid Uddin M, Dabouei A, Xu M bioRxiv. 2024; .

PMID: 38496657 PMC: 10942334. DOI: 10.1101/2024.03.02.583135.


Computational methods for structural studies with cryogenic electron tomography.

Zhao C, Lu D, Zhao Q, Ren C, Zhang H, Zhai J Front Cell Infect Microbiol. 2023; 13:1135013.

PMID: 37868346 PMC: 10586593. DOI: 10.3389/fcimb.2023.1135013.


Computational Methods Toward Unbiased Pattern Mining and Structure Determination in Cryo-Electron Tomography Data.

Kim H, Rafid Uddin M, Xu M, Chang Y J Mol Biol. 2023; 435(9):168068.

PMID: 37003470 PMC: 10164694. DOI: 10.1016/j.jmb.2023.168068.


Video Desnowing and Deraining via Saliency and Dual Adaptive Spatiotemporal Filtering.

Li Y, Wu R, Jia Z, Yang J, Kasabov N Sensors (Basel). 2021; 21(22).

PMID: 34833695 PMC: 8620369. DOI: 10.3390/s21227610.

References
1.
Rocco I, Arandjelovic R, Sivic J . Convolutional Neural Network Architecture for Geometric Matching. IEEE Trans Pattern Anal Mach Intell. 2018; 41(11):2553-2567. DOI: 10.1109/TPAMI.2018.2865351. View

2.
Bohning J, Bharat T . Towards high-throughput in situ structural biology using electron cryotomography. Prog Biophys Mol Biol. 2020; 160:97-103. DOI: 10.1016/j.pbiomolbio.2020.05.010. View

3.
Liao H, Frank J . Definition and estimation of resolution in single-particle reconstructions. Structure. 2010; 18(7):768-75. PMC: 2923553. DOI: 10.1016/j.str.2010.05.008. View

4.
Peng X, Zhu H, Feng J, Shen C, Zhang H, Zhou J . Deep Clustering With Sample-Assignment Invariance Prior. IEEE Trans Neural Netw Learn Syst. 2020; 31(11):4857-4868. DOI: 10.1109/TNNLS.2019.2958324. View

5.
Han R, Wang L, Liu Z, Sun F, Zhang F . A novel fully automatic scheme for fiducial marker-based alignment in electron tomography. J Struct Biol. 2015; 192(3):403-417. DOI: 10.1016/j.jsb.2015.09.022. View