» Articles » PMID: 35384213

Structure of an Ultrathin Oxide on Pt Sn(111) Solved by Machine Learning Enhanced Global Optimization

Overview
Specialty Chemistry
Date 2022 Apr 6
PMID 35384213
Authors
Affiliations
Soon will be listed here.
Abstract

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.

Citing Articles

Structure of an Ultrathin Oxide on PtSn(111) Solved by Machine Learning Enhanced Global Optimization.

Merte L, Bisbo M, Sokolovic I, Setvin M, Hagman B, Shipilin M Angew Chem Weinheim Bergstr Ger. 2024; 134(25):e202204244.

PMID: 38505419 PMC: 10946564. DOI: 10.1002/ange.202204244.


Accessing complex reconstructed material structures with hybrid global optimization accelerated on-the-fly machine learning.

Shi X, Cheng D, Zhao R, Zhang G, Wu S, Zhen S Chem Sci. 2023; 14(33):8777-8784.

PMID: 37621421 PMC: 10445438. DOI: 10.1039/d3sc02974c.


Neural-network-backed evolutionary search for SrTiO(110) surface reconstructions.

Wanzenbock R, Arrigoni M, Bichelmaier S, Buchner F, Carrete J, Madsen G Digit Discov. 2022; 1(5):703-710.

PMID: 36324606 PMC: 9549766. DOI: 10.1039/d2dd00072e.


Structure of an Ultrathin Oxide on Pt Sn(111) Solved by Machine Learning Enhanced Global Optimization.

Merte L, Bisbo M, Sokolovic I, Setvin M, Hagman B, Shipilin M Angew Chem Int Ed Engl. 2022; 61(25):e202204244.

PMID: 35384213 PMC: 9320988. DOI: 10.1002/anie.202204244.

References
1.
Amsler M, Goedecker S . Crystal structure prediction using the minima hopping method. J Chem Phys. 2010; 133(22):224104. DOI: 10.1063/1.3512900. View

2.
Cheng B, Griffiths R, Wengert S, Kunkel C, Stenczel T, Zhu B . Mapping Materials and Molecules. Acc Chem Res. 2020; 53(9):1981-1991. DOI: 10.1021/acs.accounts.0c00403. View

3.
Oganov A, Glass C . Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys. 2006; 124(24):244704. DOI: 10.1063/1.2210932. View

4.
Suzuki K, Hanaya T, Sato R, Minato T, Yamaguchi K, Mizuno N . Hexanuclear tin(ii) and mixed valence tin(ii,iv) oxide clusters within polyoxometalates. Chem Commun (Camb). 2016; 52(70):10688-91. DOI: 10.1039/c6cc05284c. View

5.
Merte L, Jorgensen M, Pussi K, Gustafson J, Shipilin M, Schaefer A . Structure of the SnO_{2}(110)-(4×1) Surface. Phys Rev Lett. 2017; 119(9):096102. DOI: 10.1103/PhysRevLett.119.096102. View