Ottoz D, Tang L, Dyatel A, Jovanovic M, Berchowitz L
EMBO J. 2023; 42(23):e113332.
PMID: 37921330
PMC: 10690475.
DOI: 10.15252/embj.2022113332.
Bellini E, Betti C, Sanita di Toppi L
Plants (Basel). 2021; 10(4).
PMID: 33919852
PMC: 8070800.
DOI: 10.3390/plants10040770.
Pakdee O, Songnuan W, Panvisavas N, Pokethitiyook P, Yokthongwattana K, Meetam M
Planta. 2019; 250(2):427-443.
PMID: 31037485
DOI: 10.1007/s00425-019-03173-8.
Andersen S, Sloan R, Petes T, Jinks-Robertson S
PLoS Genet. 2015; 11(4):e1005098.
PMID: 25830313
PMC: 4382028.
DOI: 10.1371/journal.pgen.1005098.
Zhao Y, Strope P, Kozmin S, McCusker J, Dietrich F, Kokoska R
G3 (Bethesda). 2014; 4(11):2259-69.
PMID: 25236733
PMC: 4232551.
DOI: 10.1534/g3.114.012922.
ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice.
Zhao L, Hu Y, Chong K, Wang T
Ann Bot. 2010; 105(3):401-9.
PMID: 20100696
PMC: 2826253.
DOI: 10.1093/aob/mcp303.
Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae.
Deminoff S, Howard S, Hester A, Warner S, Herman P
Genetics. 2006; 173(4):1909-17.
PMID: 16751660
PMC: 1569720.
DOI: 10.1534/genetics.106.059238.
The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae.
Budovskaya Y, Stephan J, Reggiori F, Klionsky D, Herman P
J Biol Chem. 2004; 279(20):20663-71.
PMID: 15016820
PMC: 1705971.
DOI: 10.1074/jbc.M400272200.
Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells.
Rutherford J, Bird A
Eukaryot Cell. 2004; 3(1):1-13.
PMID: 14871932
PMC: 329510.
DOI: 10.1128/EC.3.1.1-13.2004.
Trace elements in human physiology and pathology. Copper.
Tapiero H, Townsend D, Tew K
Biomed Pharmacother. 2003; 57(9):386-98.
PMID: 14652164
PMC: 6361146.
DOI: 10.1016/s0753-3322(03)00012-x.
The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex.
Badi L, Barberis A
Nucleic Acids Res. 2002; 30(6):1306-15.
PMID: 11884627
PMC: 101354.
DOI: 10.1093/nar/30.6.1306.
Nitrogen catabolite repression in Saccharomyces cerevisiae.
Hofman-Bang J
Mol Biotechnol. 1999; 12(1):35-73.
PMID: 10554772
DOI: 10.1385/MB:12:1:35.
Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast.
McNeil J, Agah H, Bentley D
Genes Dev. 1998; 12(16):2510-21.
PMID: 9716404
PMC: 317099.
DOI: 10.1101/gad.12.16.2510.
A system for tissue-specific copper-controllable gene expression in transgenic plants: nodule-specific antisense of aspartate aminotransferase-P2.
Mett V, Podivinsky E, Tennant A, Lochhead L, Jones W, Reynolds P
Transgenic Res. 1996; 5(2):105-113.
PMID: 8866892
DOI: 10.1007/BF01969428.
GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence.
Osiewacz H, Nuber U
Mol Gen Genet. 1996; 252(1-2):115-24.
PMID: 8804410
DOI: 10.1007/BF02173211.
Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions.
Strain J, Culotta V
Mol Gen Genet. 1996; 251(2):139-45.
PMID: 8668123
DOI: 10.1007/BF02172911.
Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae.
Yu W, Farrell R, Stillman D, Winge D
Mol Cell Biol. 1996; 16(5):2464-72.
PMID: 8628314
PMC: 231235.
DOI: 10.1128/MCB.16.5.2464.
Copper-controllable gene expression system for whole plants.
Mett V, Lochhead L, Reynolds P
Proc Natl Acad Sci U S A. 1993; 90(10):4567-71.
PMID: 8506300
PMC: 46553.
DOI: 10.1073/pnas.90.10.4567.
Identification of barriers to rotation of DNA segments in yeast from the topology of DNA rings excised by an inducible site-specific recombinase.
Gartenberg M, Wang J
Proc Natl Acad Sci U S A. 1993; 90(22):10514-8.
PMID: 8248138
PMC: 47807.
DOI: 10.1073/pnas.90.22.10514.
A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare.
Okumura N, Nishizawa N, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T
Plant Mol Biol. 1994; 25(4):705-19.
PMID: 8061321
DOI: 10.1007/BF00029608.