» Articles » PMID: 35366585

Multiple Roles for Basement Membrane Proteins in Cancer Progression and EMT

Abstract

Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-mesenchymal transition (EMT) of the basement membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.

Citing Articles

Proteogenomic characterisation of primary oral cancer unveils extracellular matrix remodelling and immunosuppressive microenvironment linked to lymph node metastasis.

Liu Y, Yang Z, Pu J, Zhong J, Khoo U, Su Y Clin Transl Med. 2025; 15(3):e70261.

PMID: 40038875 PMC: 11879901. DOI: 10.1002/ctm2.70261.


Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids.

Papaccio F, Cabeza-Segura M, Garcia-Mico B, Gimeno-Valiente F, Zuniga-Trejos S, Gambardella V J Exp Clin Cancer Res. 2025; 44(1):77.

PMID: 40022181 PMC: 11869439. DOI: 10.1186/s13046-025-03308-8.


Recombinant human collagen XVII protects skin basement membrane integrity by inhibiting the MAPK and Wnt signaling pathways.

Wang J, Lin S, Wei Y, Ye Z Mol Med Rep. 2025; 31(4).

PMID: 39981899 PMC: 11868773. DOI: 10.3892/mmr.2025.13465.


A novel basement membrane-related gene signature for predicting prognosis of HNSCC.

Wang X, Wang Z Medicine (Baltimore). 2025; 104(3):e41316.

PMID: 39833042 PMC: 11749747. DOI: 10.1097/MD.0000000000041316.


Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition.

Glaviano A, Lau H, Carter L, Lee E, Lam H, Okina E J Hematol Oncol. 2025; 18(1):6.

PMID: 39806516 PMC: 11733683. DOI: 10.1186/s13045-024-01634-6.