» Articles » PMID: 35361961

Pushing the Frontiers: Tools for Monitoring Neurotransmitters and Neuromodulators

Overview
Specialty Neurology
Date 2022 Apr 1
PMID 35361961
Authors
Affiliations
Soon will be listed here.
Abstract

Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.

Citing Articles

Coding principles and mechanisms of serotonergic transmission modes.

Zhang Y, Zhang P, Shin M, Chang Y, Abbott S, Venton B Mol Psychiatry. 2025; .

PMID: 39987232 DOI: 10.1038/s41380-025-02930-4.


Layer-specific control of inhibition by NDNF interneurons.

Naumann L, Hertag L, Muller J, Letzkus J, Sprekeler H Proc Natl Acad Sci U S A. 2025; 122(4):e2408966122.

PMID: 39841147 PMC: 11789034. DOI: 10.1073/pnas.2408966122.


multiplex imaging of dynamic neurochemical networks with designed far-red dopamine sensors.

Zheng Y, Cai R, Wang K, Zhang J, Zhuo Y, Dong H bioRxiv. 2025; .

PMID: 39763912 PMC: 11703222. DOI: 10.1101/2024.12.22.629999.


Enhancing striatal acetylcholine facilitates dopamine release and striatal output in parkinsonian mice.

Li H, Chen Z, Tan Y, Luo H, Lu C, Gao C Cell Biosci. 2024; 14(1):146.

PMID: 39627827 PMC: 11616140. DOI: 10.1186/s13578-024-01328-z.


Innervation density governs crosstalk of GPCR-based norepinephrine and dopamine sensors.

Lopez R, Noble N, Ozcete O, Cai X, Handy G, Andersen J bioRxiv. 2024; .

PMID: 39605389 PMC: 11601633. DOI: 10.1101/2024.11.23.624963.


References
1.
Buczynski M, Parsons L . Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010; 160(3):423-42. PMC: 2931546. DOI: 10.1111/j.1476-5381.2010.00787.x. View

2.
Hogan B, Lunte S, Stobaugh J, Lunte C . On-line coupling of in vivo microdialysis sampling with capillary electrophoresis. Anal Chem. 1994; 66(5):596-602. DOI: 10.1021/ac00077a004. View

3.
Villette V, Chavarha M, Dimov I, Bradley J, Pradhan L, Mathieu B . Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell. 2019; 179(7):1590-1608.e23. PMC: 6941988. DOI: 10.1016/j.cell.2019.11.004. View

4.
Beyene A, Delevich K, Del Bonis-ODonnell J, Piekarski D, Lin W, Thomas A . Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci Adv. 2019; 5(7):eaaw3108. PMC: 6620097. DOI: 10.1126/sciadv.aaw3108. View

5.
Vickrey T, Condron B, Venton B . Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal Chem. 2009; 81(22):9306-13. PMC: 2876717. DOI: 10.1021/ac901638z. View