» Articles » PMID: 35358927

Poly (lactic-co-glycolic Acid) Nanoparticle-based Vaccines Delivery Systems As a Novel Adjuvant for H9N2 Antigen Enhance Immune Responses

Overview
Journal Poult Sci
Publisher Elsevier
Date 2022 Mar 31
PMID 35358927
Authors
Affiliations
Soon will be listed here.
Abstract

Poly (lactic-co-glycolic acid) (PLGA) nanoparticle used as vaccine adjuvants have been widely investigated due to their safety, antigen slow-release ability, and good adjuvants activity. In this study, immunopotentiator Alhagi honey polysaccharide encapsulated PLGA nanoparticles (AHPP) and assembled pickering emulsion with AHPP as shell and squalene as core (PPAS) were prepared. Characterization of AHPP and PPAS were investigated. H9N2 absorbed nanoparticles formulations were immunized to chicken, then the magnitude and kinetics of antibody and cellular immune responses were assessed. Our results showed that PPAS had rough strawberry-like surfaces, a large number of antigens could be absorbed on their surfaces through simple mixing. Adjuvant activity of PPAS showed that, PPAS/H9N2 can induce long-lasting and high HI titers, high thymus, spleen, and bursa of fabricius organ index. Moreover, chicken immunized with PPAS/H9N2 showed a mixed high differentiation of CD4 and CD8a T cell, and strong Th1 and Th2-type cytokines mRNA expression. Thus, these findings demonstrated that PPAS could induce a strong and long-term cellular and humoral immune response, and has the potential to serve as an effective vaccine delivery adjuvant system for H9N2 antigen.

Citing Articles

Beyond Needles: Immunomodulatory Hydrogel-Guided Vaccine Delivery Systems.

Rana M, Demirkaya C, De la Hoz Siegler H Gels. 2025; 11(1).

PMID: 39851978 PMC: 11764567. DOI: 10.3390/gels11010007.


Delivery of dendritic cells targeting 3M2e-HA2 nanoparticles with a CpG adjuvant via lysosomal escape of Salmonella enhances protection against H9N2 avian influenza virus.

Jia F, Wang W, Tian Y, Zahra A, He Y, Ge C Poult Sci. 2024; 104(1):104616.

PMID: 39631272 PMC: 11665339. DOI: 10.1016/j.psj.2024.104616.


Antimicrobial resistance of : navigating clinical impacts, current resistance trends, and innovations in breaking therapies.

Elfadadny A, Ragab R, Alharbi M, Badshah F, Ibanez-Arancibia E, Farag A Front Microbiol. 2024; 15:1374466.

PMID: 38646632 PMC: 11026690. DOI: 10.3389/fmicb.2024.1374466.