» Articles » PMID: 35354921

Myeloid Neoplasms and Clonal Hematopoiesis from the RUNX1 Perspective

Overview
Journal Leukemia
Specialties Hematology
Oncology
Date 2022 Mar 31
PMID 35354921
Authors
Affiliations
Soon will be listed here.
Abstract

RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.

Citing Articles

Transcription factor RUNX1 regulates coagulation factor XIII-A (): decreased platelet-megakaryocyte expression and clot contraction in haplodeficiency.

Del Carpio-Cano F, Songdej N, Guan L, Mao G, Goldfinger L, Wurtzel J Res Pract Thromb Haemost. 2025; 9(1):102680.

PMID: 39995753 PMC: 11849627. DOI: 10.1016/j.rpth.2025.102680.


RUNX1 isoforms regulate RUNX1 and target genes differentially in platelets-megakaryocytes: association with clinical cardiovascular events.

Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao A J Thromb Haemost. 2024; 22(12):3581-3598.

PMID: 39181539 PMC: 11608153. DOI: 10.1016/j.jtha.2024.07.032.


Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma.

Palacios-Berraquero M, Rodriguez-Marquez P, Calleja-Cervantes M, Berastegui N, Zabaleta A, Burgos L Blood Adv. 2024; 8(21):5479-5492.

PMID: 39058976 PMC: 11532743. DOI: 10.1182/bloodadvances.2023012522.


Germ line ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition.

Zerella J, Homan C, Arts P, Lin X, Spinelli S, Venugopal P Blood. 2024; 144(17):1765-1780.

PMID: 38991192 PMC: 11530364. DOI: 10.1182/blood.2024024607.


Interface-guided phenotyping of coding variants in the transcription factor RUNX1.

Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A Cell Rep. 2024; 43(7):114436.

PMID: 38968069 PMC: 11345852. DOI: 10.1016/j.celrep.2024.114436.


References
1.
Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A. 1991; 88(23):10431-4. PMC: 52942. DOI: 10.1073/pnas.88.23.10431. View

2.
Bae S, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima H . Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene. 1993; 8(3):809-14. View

3.
Melnikova I, Crute B, Wang S, Speck N . Sequence specificity of the core-binding factor. J Virol. 1993; 67(4):2408-11. PMC: 240414. DOI: 10.1128/JVI.67.4.2408-2411.1993. View

4.
Link K, Chou F, Mulloy J . Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol. 2009; 222(1):50-6. PMC: 2812028. DOI: 10.1002/jcp.21950. View

5.
Sood R, Kamikubo Y, Liu P . Role of RUNX1 in hematological malignancies. Blood. 2017; 129(15):2070-2082. PMC: 5391618. DOI: 10.1182/blood-2016-10-687830. View