» Articles » PMID: 35353691

Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models

Overview
Date 2022 Mar 30
PMID 35353691
Authors
Affiliations
Soon will be listed here.
Abstract

Computational Fluid Dynamics (CFD) is used to assist in designing artificial valves and planning procedures, focusing on local flow features. However, assessing the impact on overall cardiovascular function or predicting longer-term outcomes may requires more comprehensive whole heart CFD models. Fitting such models to patient data requires numerous computationally expensive simulations, and depends on specific clinical measurements to constrain model parameters, hampering clinical adoption. Surrogate models can help to accelerate the fitting process while accounting for the added uncertainty. We create a validated patient-specific four-chamber heart CFD model based on the Navier-Stokes-Brinkman (NSB) equations and test Gaussian Process Emulators (GPEs) as a surrogate model for performing a variance-based global sensitivity analysis (GSA). GSA identified preload as the dominant driver of flow in both the right and left side of the heart, respectively. Left-right differences were seen in terms of vascular outflow resistances, with pulmonary artery resistance having a much larger impact on flow than aortic resistance. Our results suggest that GPEs can be used to identify parameters in personalized whole heart CFD models, and highlight the importance of accurate preload measurements.

Citing Articles

Fast and accurate prediction of drug induced proarrhythmic risk with sex specific cardiac emulators.

Dominguez-Gomez P, Zingaro A, Baldo-Canut L, Balzotti C, Darpo B, Morton C NPJ Digit Med. 2024; 7(1):380.

PMID: 39725693 PMC: 11671601. DOI: 10.1038/s41746-024-01370-8.


A computational study on the influence of antegrade accessory pathway location on the 12-lead electrocardiogram in Wolff-Parkinson-White syndrome.

Gillette K, Winkler B, Kurath-Koller S, Scherr D, Vigmond E, Bar M Europace. 2024; 27(2).

PMID: 39259657 PMC: 11879338. DOI: 10.1093/europace/euae223.


Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination.

Koopsen T, van Osta N, van Loon T, Meiburg R, Huberts W, Beela A Biomed Eng Online. 2024; 23(1):46.

PMID: 38741182 PMC: 11089736. DOI: 10.1186/s12938-024-01232-0.


The Use of Virtual Tissue Constructs That Include Morphological Variability to Assess the Potential of Electrical Impedance Spectroscopy to Differentiate between Thyroid and Parathyroid Tissues during Surgery.

Matella M, Hunter K, Balasubramanian S, Walker D Sensors (Basel). 2024; 24(7).

PMID: 38610409 PMC: 11014196. DOI: 10.3390/s24072198.


The role of computational methods in cardiovascular medicine: a narrative review.

Fumagalli I, Pagani S, Vergara C, Dede L, Adebo D, Greco M Transl Pediatr. 2024; 13(1):146-163.

PMID: 38323181 PMC: 10839285. DOI: 10.21037/tp-23-184.


References
1.
Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D . Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging. 2008; 27(11):1668-81. DOI: 10.1109/TMI.2008.2004421. View

2.
Garcia-Isla G, Olivares A, Silva E, Nunez-Garcia M, Butakoff C, Sanchez-Quintana D . Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int J Numer Method Biomed Eng. 2018; :e3100. DOI: 10.1002/cnm.3100. View

3.
Longobardi S, Lewalle A, Coveney S, Sjaastad I, Espe E, Louch W . Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded rats. Philos Trans A Math Phys Eng Sci. 2020; 378(2173):20190334. PMC: 7287330. DOI: 10.1098/rsta.2019.0334. View

4.
Shi W, Jantsch M, Aljabar P, Pizarro L, Bai W, Wang H . Temporal sparse free-form deformations. Med Image Anal. 2013; 17(7):779-89. DOI: 10.1016/j.media.2013.04.010. View

5.
Ellwein L, Tran H, Zapata C, Novak V, Olufsen M . Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. Cardiovasc Eng. 2007; 8(2):94-108. DOI: 10.1007/s10558-007-9047-3. View