» Articles » PMID: 35352724

Structural Basis of the Radical Pair State in Photolyases and Cryptochromes

Abstract

We present the structure of a photoactivated animal (6-4) photolyase in its radical pair state, captured by serial crystallography. We observe how a conserved asparigine moves towards the semiquinone FAD chromophore and stabilizes it by hydrogen bonding. Several amino acids around the final tryptophan radical rearrange, opening it up to the solvent. The structure explains how the protein environment stabilizes the radical pair state, which is crucial for function of (6-4) photolyases and cryptochromes.

Citing Articles

'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle.

Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi M Front Plant Sci. 2024; 15:1340304.

PMID: 38495372 PMC: 10940379. DOI: 10.3389/fpls.2024.1340304.


From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons.

Caramello N, Royant A Acta Crystallogr D Struct Biol. 2024; 80(Pt 2):60-79.

PMID: 38265875 PMC: 10836399. DOI: 10.1107/S2059798323011002.


Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography.

Cellini A, Shankar M, Nimmrich A, Hunt L, Monrroy L, Mutisya J Nat Chem. 2024; 16(4):624-632.

PMID: 38225270 PMC: 10997514. DOI: 10.1038/s41557-023-01413-9.


A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers.

Wranik M, Kepa M, Beale E, James D, Bertrand Q, Weinert T Nat Commun. 2023; 14(1):7956.

PMID: 38042952 PMC: 10693631. DOI: 10.1038/s41467-023-43523-5.


Insights into Molecular Structure of Pterins Suitable for Biomedical Applications.

Buglak A, Kapitonova M, Vechtomova Y, Telegina T Int J Mol Sci. 2022; 23(23).

PMID: 36499560 PMC: 9737128. DOI: 10.3390/ijms232315222.


References
1.
Czarna A, Berndt A, Singh H, Grudziecki A, Ladurner A, Timinszky G . Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell. 2013; 153(6):1394-405. DOI: 10.1016/j.cell.2013.05.011. View

2.
Franz-Badur S, Penner A, Strass S, von Horsten S, Linne U, Essen L . Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation. Sci Rep. 2019; 9(1):9896. PMC: 6616342. DOI: 10.1038/s41598-019-45885-7. View

3.
Maul M, Barends T, Glas A, Cryle M, Domratcheva T, Schneider S . Crystal structure and mechanism of a DNA (6-4) photolyase. Angew Chem Int Ed Engl. 2008; 47(52):10076-80. DOI: 10.1002/anie.200804268. View

4.
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A . Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science. 2018; 361(6398). DOI: 10.1126/science.aat0094. View

5.
Cellini A, Wahlgren W, Henry L, Pandey S, Ghosh S, Castillon L . The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature. Acta Crystallogr D Struct Biol. 2021; 77(Pt 8):1001-1009. PMC: 8329860. DOI: 10.1107/S2059798321005830. View