» Articles » PMID: 35347137

Hollow-core Optical Fibre Sensors for Operando Raman Spectroscopy Investigation of Li-ion Battery Liquid Electrolytes

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Mar 29
PMID 35347137
Authors
Affiliations
Soon will be listed here.
Abstract

Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNiMnCoO cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.

Citing Articles

Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression.

Leau C, Wang Y, Gervillie-Mouravieff C, Boles S, Zhang X, Coudray S Nat Commun. 2025; 16(1):757.

PMID: 39824815 PMC: 11742694. DOI: 10.1038/s41467-024-55339-y.


Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions.

Tao S, Ma R, Zhao Z, Ma G, Su L, Chang H Nat Commun. 2024; 15(1):10154.

PMID: 39578484 PMC: 11584641. DOI: 10.1038/s41467-024-54454-0.


Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg J, Besteiro L ACS Nano. 2024; 18(43):29337-29379.

PMID: 39401392 PMC: 11526435. DOI: 10.1021/acsnano.4c06192.


Microlens Hollow-Core Fiber Probes for Operando Raman Spectroscopy.

Groom M, Miele E, Pinnell J, Ellis M, McConnell J, Sakr H ACS Photonics. 2024; 11(8):3167-3177.

PMID: 39184181 PMC: 11342360. DOI: 10.1021/acsphotonics.4c00525.


Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability.

Yu K, Chen W, Deng D, Wu Q, Hao J Sensors (Basel). 2024; 24(7).

PMID: 38610274 PMC: 11014410. DOI: 10.3390/s24072057.


References
1.
Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H . Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. J Phys Chem Lett. 2017; 8(19):4820-4825. DOI: 10.1021/acs.jpclett.7b01927. View

2.
Castelvecchi D . Electric cars and batteries: how will the world produce enough?. Nature. 2021; 596(7872):336-339. DOI: 10.1038/d41586-021-02222-1. View

3.
Rinkel B, Hall D, Temprano I, Grey C . Electrolyte Oxidation Pathways in Lithium-Ion Batteries. J Am Chem Soc. 2020; 142(35):15058-15074. DOI: 10.1021/jacs.0c06363. View

4.
Lin F, Markus I, Nordlund D, Weng T, Asta M, Xin H . Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun. 2014; 5:3529. DOI: 10.1038/ncomms4529. View

5.
Freiberg A, Roos M, Wandt J, de Vivie-Riedle R, Gasteiger H . Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes. J Phys Chem A. 2018; 122(45):8828-8839. DOI: 10.1021/acs.jpca.8b08079. View