» Articles » PMID: 35342335

SENP1 Promotes Triple-negative Breast Cancer Invasion and Metastasis Via Enhancing CSN5 Transcription Mediated by GATA1 DeSUMOylation

Overview
Journal Int J Biol Sci
Specialty Biology
Date 2022 Mar 28
PMID 35342335
Authors
Affiliations
Soon will be listed here.
Abstract

TNBC is characterized by high incidence of visceral metastasis and lacks effective clinical targets. This study aims to delineate the molecular mechanisms of SENP1 in TNBC invasion and metastasis. By using IHC to test the SENP1 expression in TNBC tissues, we analyzed the relationship between SENP1 expression and TNBC prognosis. We showed that SENP1 expression was higher in TNBC tumor tissues and related to TNBC prognosis, supporting SENP1 as an independent risk factor. High expression of SENP1 was significantly associated with histologic grade and tumor lymph node invasion. Intriguingly, the expression levels of SENP1 in TNBC tumors were significantly correlated with that of CSN5, GATA1 and ZEB1. Importantly, SENP1 promoted TNBC cell migration and invasion by regulating ZEB1 deubiquitination and expression through CSN5. Further studies showed that deSUMOylation at lysine residue K137 of GATA1 enhanced the binding of GATA1 to the CSN5 promoter and transactivated CSN5 expression. In addition, we showed that ZEB1 is deubiquitinated at lysine residue K1108. Our studies also indicated that reduction in SENP1 expression upregulated GATA1 SUMOylation, and thus resulted in decreased expression of CSN5 and ZEB1 in the tumor microenvironment, which decelerated TNBC progression and metastasis. SENP1 promoted CSN5-mediated ZEB1 protein degradation via deSUMOylation of GATA1, and thus influenced TNBC progression. These findings suggest that SENP1 could be utilized as a potential target for blockade of TNBC development and thus provide a totally new approach for TNBC treatment.

Citing Articles

SENP1-mediated deSUMOylation of YBX1 promotes colorectal cancer development through the SENP1-YBX1-AKT signaling axis.

Sheng Z, Luo S, Huang L, Deng Y, Zhang N, Luo Y Oncogene. 2025; .

PMID: 39988696 DOI: 10.1038/s41388-025-03302-6.


Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia.

Seymour L, Nuru N, Johnson K, Gutierrez J, Njoku V, Darie C Molecules. 2025; 30(3).

PMID: 39942749 PMC: 11820228. DOI: 10.3390/molecules30030645.


Chromatin protein complexes involved in gene repression in lamina-associated domains.

Manzo S, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten M EMBO J. 2024; 43(21):5260-5287.

PMID: 39322756 PMC: 11535540. DOI: 10.1038/s44318-024-00214-1.


Impaired SUMOylation of FoxA1 promotes nonalcoholic fatty liver disease through down-regulation of Sirt6.

Zou D, Liao J, Xiao M, Liu L, Dai D, Xu M Cell Death Dis. 2024; 15(9):674.

PMID: 39277582 PMC: 11401847. DOI: 10.1038/s41419-024-07054-1.


The deubiquitinase BRCC3 increases the stability of ZEB1 and promotes the proliferation and metastasis of triple-negative breast cancer cells.

Huang Q, Zheng S, Gu H, Yang Z, Lu Y, Yu X Acta Biochim Biophys Sin (Shanghai). 2024; 56(4):564-575.

PMID: 38449391 PMC: 11090844. DOI: 10.3724/abbs.2024005.


References
1.
Niwinska A, Murawska M, Pogoda K . Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann Oncol. 2009; 21(5):942-8. DOI: 10.1093/annonc/mdp407. View

2.
Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero E, Castells A . ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010; 29(24):3490-500. DOI: 10.1038/onc.2010.102. View

3.
Sun X, Chen Y, Su Y, Wang X, Chauhan K, Liang J . SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc Natl Acad Sci U S A. 2018; 115(43):10983-10988. PMC: 6205424. DOI: 10.1073/pnas.1802932115. View

4.
Gilles L, Arslan A, Marinaccio C, Wen Q, Arya P, McNulty M . Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Invest. 2017; 127(4):1316-1320. PMC: 5373858. DOI: 10.1172/JCI82905. View

5.
Liang W, Song S, Xu Y, Li H, Liu H . Knockdown of ZEB1 suppressed the formation of vasculogenic mimicry and epithelial-mesenchymal transition in the human breast cancer cell line MDA-MB-231. Mol Med Rep. 2018; 17(5):6711-6716. DOI: 10.3892/mmr.2018.8677. View