» Articles » PMID: 35337149

Review on the Synthesis and Therapeutic Potential of Pyrido[2,3-], [3,2-], [3,4-] and [4,3-]pyrimidine Derivatives

Overview
Publisher MDPI
Specialty Chemistry
Date 2022 Mar 26
PMID 35337149
Authors
Affiliations
Soon will be listed here.
Abstract

The objective of this review is to list the structures composed of a pyridopyrimidine moiety which have shown a therapeutic interest or have already been approved for use as therapeutics. We consider all the synthetic protocols to prepare these pyridopyrimidine derivatives. The review is organized into four sections, successively pyrido[2,3-]pyrimidines, pyrido[3,4-]pyrimidines, pyrido[4,3-]pyrimidines and pyrido[3,2-]pyrimidines. For each compound we present the biological activity and the synthetic route reported. To produce this manuscript, the bibliographic research was done using Reaxys and Scifinder for each kind of pyridopyrimidine.

Citing Articles

Design, Synthesis, Antimicrobial Activity, and Molecular Docking of Novel Thiazoles, Pyrazoles, 1,3-Thiazepinones, and 1,2,4-Triazolopyrimidines Derived from Quinoline-Pyrido[2,3-] Pyrimidinones.

Abu-Hashem A, Al-Hussain S Pharmaceuticals (Basel). 2025; 17(12.

PMID: 39770474 PMC: 11728477. DOI: 10.3390/ph17121632.


Combinatorial Targeting of Common Docking and ATP Binding Sites on Mps1 MAPK for Management of Pathogenic Fungi.

Kong Z, Li S, Li J, Chen Y, Chen M, Zhang X J Agric Food Chem. 2024; 72(49):27115-27124.

PMID: 39622772 PMC: 11640755. DOI: 10.1021/acs.jafc.4c09504.


New pyridopyrimidine derivatives as dual EGFR and CDK4/cyclin D1 inhibitors: synthesis, biological screening and molecular modeling.

Krakisha F, Othman D, El Husseiny W, Nasr M Future Med Chem. 2024; 16(16):1633-1648.

PMID: 39023284 PMC: 11370904. DOI: 10.1080/17568919.2024.2366147.


Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove .

Karthik Y, Kalyani M, Krishnappa S, Devappa R, Anjali Goud C, Ramakrishna K Front Microbiol. 2023; 14:1096826.

PMID: 36876075 PMC: 9982118. DOI: 10.3389/fmicb.2023.1096826.


Medicinal chemistry perspective of pyrido[2,3-]pyrimidines as anticancer agents.

Kumar A, Bhagat K, Singh A, Singh H, Angre T, Verma A RSC Adv. 2023; 13(10):6872-6908.

PMID: 36865574 PMC: 9972360. DOI: 10.1039/d3ra00056g.


References
1.
Anderhub S, Mak G, Gurden M, Faisal A, Drosopoulos K, Walsh K . High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers. Mol Cancer Ther. 2019; 18(10):1696-1707. DOI: 10.1158/1535-7163.MCT-18-1203. View

2.
Yang H, Xiang S, Kazi A, Sebti S . The GTPase KRAS suppresses the p53 tumor suppressor by activating the NRF2-regulated antioxidant defense system in cancer cells. J Biol Chem. 2020; 295(10):3055-3063. PMC: 7062149. DOI: 10.1074/jbc.RA119.011930. View

3.
Pearson G, Robinson F, Beers Gibson T, Xu B, Karandikar M, Berman K . Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; 22(2):153-83. DOI: 10.1210/edrv.22.2.0428. View

4.
Estrada-Bernal A, Le A, Doak A, Tirunagaru V, Silva S, Bull M . Tarloxotinib Is a Hypoxia-Activated Pan-HER Kinase Inhibitor Active Against a Broad Range of HER-Family Oncogenes. Clin Cancer Res. 2020; 27(5):1463-1475. PMC: 7926264. DOI: 10.1158/1078-0432.CCR-20-3555. View

5.
Hawser S, Lociuro S, Islam K . Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol. 2005; 71(7):941-8. DOI: 10.1016/j.bcp.2005.10.052. View