6.
Lin Y, Jiang H, Chu Z, Tang X, Zhu S, Cheng B
. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 2011; 12:76.
PMC: 3039612.
DOI: 10.1186/1471-2164-12-76.
View
7.
Van Inghelandt D, Frey F, Ries D, Stich B
. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci Rep. 2019; 9(1):14418.
PMC: 6783442.
DOI: 10.1038/s41598-019-50853-2.
View
8.
Zandalinas S, Sengupta S, Burks D, Azad R, Mittler R
. Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light. Plant J. 2018; 98(1):126-141.
PMC: 6850305.
DOI: 10.1111/tpj.14205.
View
9.
Sakurai H, Enoki Y
. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J. 2010; 277(20):4140-9.
DOI: 10.1111/j.1742-4658.2010.07829.x.
View
10.
Matsuoka Y, Vigouroux Y, Goodman M, Sanchez G J, Buckler E, Doebley J
. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A. 2002; 99(9):6080-4.
PMC: 122905.
DOI: 10.1073/pnas.052125199.
View
11.
Guo M, Liu J, Ma X, Luo D, Gong Z, Lu M
. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Front Plant Sci. 2016; 7:114.
PMC: 4746267.
DOI: 10.3389/fpls.2016.00114.
View
12.
Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo A
. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018; 361(6407):1112-1115.
DOI: 10.1126/science.aat7744.
View
13.
Miller G, Mittler R
. Could heat shock transcription factors function as hydrogen peroxide sensors in plants?. Ann Bot. 2006; 98(2):279-88.
PMC: 2803459.
DOI: 10.1093/aob/mcl107.
View
14.
Li Z, Howell S
. Heat Stress Responses and Thermotolerance in Maize. Int J Mol Sci. 2021; 22(2).
PMC: 7833377.
DOI: 10.3390/ijms22020948.
View
15.
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S
. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006; 48(4):535-47.
DOI: 10.1111/j.1365-313X.2006.02889.x.
View
16.
Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten W, Kleyer M
. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 2016; 212(4):838-855.
DOI: 10.1111/nph.14243.
View
17.
Zandalinas S, Fichman Y, Devireddy A, Sengupta S, Azad R, Mittler R
. Systemic signaling during abiotic stress combination in plants. Proc Natl Acad Sci U S A. 2020; 117(24):13810-13820.
PMC: 7306788.
DOI: 10.1073/pnas.2005077117.
View
18.
Zhong M, Orosz A, Wu C
. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell. 1998; 2(1):101-8.
DOI: 10.1016/s1097-2765(00)80118-5.
View
19.
Liu L, Cui F, Li Q, Yin B, Zhang H, Lin B
. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res. 2010; 21(6):957-69.
PMC: 3203697.
DOI: 10.1038/cr.2010.181.
View
20.
Shi Y, Mosser D, Morimoto R
. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 1998; 12(5):654-66.
PMC: 316571.
DOI: 10.1101/gad.12.5.654.
View