» Articles » PMID: 35334227

Isolation, Profiling, and Tracking of Extracellular Vesicle Cargo in Caenorhabditis Elegans

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 2022 Mar 25
PMID 35334227
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.

Citing Articles

SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes.

Blow F, Jeffrey K, Chow F, Nikonorova I, Barr M, Cook A Open Biol. 2024; 14(11):240190.

PMID: 39501794 PMC: 11538922. DOI: 10.1098/rsob.240190.


Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects.

Ma B, Li L, Bao Y, Yuan L, Liu S, Qi L Chem Biomed Imaging. 2024; 2(1):27-46.

PMID: 39473463 PMC: 11504620. DOI: 10.1021/cbmi.3c00095.


A cytidine deaminase regulates axon regeneration by modulating the functions of the Caenorhabditis elegans HGF/plasminogen family protein SVH-1.

Shimizu T, Nomachi T, Matsumoto K, Hisamoto N PLoS Genet. 2024; 20(7):e1011367.

PMID: 39058749 PMC: 11305532. DOI: 10.1371/journal.pgen.1011367.


The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo.

Sundaram M, Pujol N Genetics. 2024; 227(4.

PMID: 38995735 PMC: 11304992. DOI: 10.1093/genetics/iyae072.


Extracellular vesicles.

Wang J, Barr M, Wehman A Genetics. 2024; 227(4).

PMID: 38884207 PMC: 11304975. DOI: 10.1093/genetics/iyae088.


References
1.
Granato M, Schnabel H, Schnabel R . pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res. 1994; 22(9):1762-3. PMC: 308061. DOI: 10.1093/nar/22.9.1762. View

2.
Fisher A, Page K, Lithgow G, Nash L . The Caenorhabditis elegans K10C2.4 gene encodes a member of the fumarylacetoacetate hydrolase family: a Caenorhabditis elegans model of type I tyrosinemia. J Biol Chem. 2008; 283(14):9127-35. PMC: 2431024. DOI: 10.1074/jbc.M708341200. View

3.
Silva M, Morsci N, Nguyen K, Rizvi A, Rongo C, Hall D . Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology. Curr Biol. 2017; 27(7):968-980. PMC: 5688951. DOI: 10.1016/j.cub.2017.02.039. View

4.
Peracchi A, Veiga-da-Cunha M, Kuhara T, Ellens K, Paczia N, Stroobant V . Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc Natl Acad Sci U S A. 2017; 114(16):E3233-E3242. PMC: 5402446. DOI: 10.1073/pnas.1613736114. View

5.
Coveney C, Zhu L, Miotla-Zarebska J, Stott B, Parisi I, Batchelor V . Role of Ciliary Protein Intraflagellar Transport Protein 88 in the Regulation of Cartilage Thickness and Osteoarthritis Development in Mice. Arthritis Rheumatol. 2021; 74(1):49-59. DOI: 10.1002/art.41894. View