» Articles » PMID: 35333652

A Molecular Switch Controls the Impact of Cholesterol on a Kir Channel

Overview
Specialty Science
Date 2022 Mar 25
PMID 35333652
Authors
Affiliations
Soon will be listed here.
Abstract

SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.

Citing Articles

Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in .

Chen Y, Hagopian B, Tan S bioRxiv. 2024; .

PMID: 39605342 PMC: 11601456. DOI: 10.1101/2024.11.10.622811.


Molecular mechanism of GIRK2 channel gating modulated by cholesteryl hemisuccinate.

Cui M, Lu Y, Ma X, Logothetis D Front Physiol. 2024; 15:1486362.

PMID: 39493862 PMC: 11527606. DOI: 10.3389/fphys.2024.1486362.


Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels.

Nguyen H, Glaaser I, Slesinger P Front Physiol. 2024; 15:1386645.

PMID: 38903913 PMC: 11187414. DOI: 10.3389/fphys.2024.1386645.


Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator.

Chen Y, MacGilvary N, Tan S PLoS Genet. 2024; 20(1):e1011143.

PMID: 38266039 PMC: 10843139. DOI: 10.1371/journal.pgen.1011143.


Identification of Potential Modulators of a Pathogenic G Protein-Gated Inwardly Rectifying K Channel 4 Mutant: Investigation in the Context of Drug Discovery for Hypertension.

Pitsillou E, Logothetis A, Liang J, El-Osta A, Hung A, AbuMaziad A Molecules. 2023; 28(24).

PMID: 38138436 PMC: 10745636. DOI: 10.3390/molecules28247946.


References
1.
Nishida M, Cadene M, Chait B, MacKinnon R . Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 2007; 26(17):4005-15. PMC: 1994128. DOI: 10.1038/sj.emboj.7601828. View

2.
Romanenko V, Fang Y, Byfield F, Travis A, Vandenberg C, Rothblat G . Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004; 87(6):3850-61. PMC: 1304896. DOI: 10.1529/biophysj.104.043273. View

3.
Phillips J, Hardy D, Maia J, Stone J, Ribeiro J, Bernardi R . Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020; 153(4):044130. PMC: 7395834. DOI: 10.1063/5.0014475. View

4.
LeMasurier M, Heginbotham L, Miller C . KcsA: it's a potassium channel. J Gen Physiol. 2001; 118(3):303-14. PMC: 2229506. DOI: 10.1085/jgp.118.3.303. View

5.
Tao X, Avalos J, Chen J, MacKinnon R . Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009; 326(5960):1668-74. PMC: 2819303. DOI: 10.1126/science.1180310. View