» Articles » PMID: 35330872

Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in

Overview
Journal Front Plant Sci
Date 2022 Mar 25
PMID 35330872
Authors
Affiliations
Soon will be listed here.
Abstract

Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.

Citing Articles

One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity.

Hallahan B Biology (Basel). 2024; 13(10).

PMID: 39452126 PMC: 11504056. DOI: 10.3390/biology13100817.


Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success.

Muthusamy M, Pandian S, Shin E, An H, Sohn S Front Plant Sci. 2024; 15:1455685.

PMID: 39399543 PMC: 11466797. DOI: 10.3389/fpls.2024.1455685.


The CsPPR gene with RNA-editing function involved in leaf color asymmetry of the reciprocal hybrids derived from Cucumis sativus and C. hystrix.

Xia L, Wang H, Zhao X, Zhao Q, Yu X, Li J Planta. 2024; 260(4):102.

PMID: 39302471 DOI: 10.1007/s00425-024-04513-z.


Morphological and metabolomics profiling of intraspecific Arabidopsis hybrids in relation to biomass heterosis.

Le Q, Sugi N, Yamaguchi M, Hirayama T, Kobayashi M, Suzuki Y Sci Rep. 2023; 13(1):9529.

PMID: 37308530 PMC: 10261038. DOI: 10.1038/s41598-023-36618-y.


Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids.

Orantes-Bonilla M, Wang H, Lee H, Golicz A, Hu D, Li W Theor Appl Genet. 2023; 136(5):113.

PMID: 37071201 PMC: 10113308. DOI: 10.1007/s00122-023-04345-7.


References
1.
Weigel D . Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 2011; 158(1):2-22. PMC: 3252104. DOI: 10.1104/pp.111.189845. View

2.
Wolff P, Jiang H, Wang G, Santos-Gonzalez J, Kohler C . Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. Elife. 2015; 4. PMC: 4589659. DOI: 10.7554/eLife.10074. View

3.
Greiner S, Sobanski J, Bock R . Why are most organelle genomes transmitted maternally?. Bioessays. 2014; 37(1):80-94. PMC: 4305268. DOI: 10.1002/bies.201400110. View

4.
Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, Severing E . Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nat Plants. 2020; 6(1):13-21. DOI: 10.1038/s41477-019-0575-9. View

5.
Batista R, Kohler C . Genomic imprinting in plants-revisiting existing models. Genes Dev. 2020; 34(1-2):24-36. PMC: 6938664. DOI: 10.1101/gad.332924.119. View