6.
Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P
. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clin Oral Implants Res. 2003; 14(5):616-20.
DOI: 10.1034/j.1600-0501.2003.00932.x.
View
7.
Alsaadi G, Quirynen M, Komarek A, van Steenberghe D
. Impact of local and systemic factors on the incidence of late oral implant loss. Clin Oral Implants Res. 2008; 19(7):670-6.
DOI: 10.1111/j.1600-0501.2008.01534.x.
View
8.
Saglanmak A, Gultekin A, Cinar C, Szmukler-Moncler S, Karabuda C
. Effect of soft tissue thickness on crestal bone loss of early loaded implants with platform switching: 1- and 5-year data. Quintessence Int. 2021; 52(5):426-433.
DOI: 10.3290/j.qi.b912613.
View
9.
Horwitz J, Machtei E, Frankental S, Gabay E, Mayer Y, Joseph L
. Clinical and Patient-Related Outcomes of a Tapered Implant System With Switched Platform Conical Abutments: A Private Practice Field Trial. J Oral Implantol. 2018; 44(5):326-329.
DOI: 10.1563/aaid-joi-D-18-00005.
View
10.
Kolte A, Bawankar P, Kolte R, Shrirao T
. Peri-implant tissue stability in premolar and molar sites: a retrospective clinical and radiographic analysis. Quintessence Int. 2021; 52(7):584-595.
DOI: 10.3290/j.qi.b1244321.
View
11.
Preiskel H, Tsolka P
. Treatment outcomes in implant therapy: the influence of surgical and prosthodontic experience. Int J Prosthodont. 1995; 8(3):273-9.
View
12.
Linkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L
. Influence of Vertical Soft Tissue Thickness on Crestal Bone Changes Around Implants with Platform Switching: A Comparative Clinical Study. Clin Implant Dent Relat Res. 2014; 17(6):1228-36.
DOI: 10.1111/cid.12222.
View
13.
Beschnidt S, Cacaci C, Dedeoglu K, Hildebrand D, Hulla H, Iglhaut G
. Implant success and survival rates in daily dental practice: 5-year results of a non-interventional study using CAMLOG SCREW-LINE implants with or without platform-switching abutments. Int J Implant Dent. 2018; 4(1):33.
PMC: 6212375.
DOI: 10.1186/s40729-018-0145-3.
View
14.
Pimenta J, Szmukler-Moncler S, Raigrodski A
. Physical characterization of 3 implant systems made of distinct materials with distinct surfaces. J Prosthet Dent. 2021; 128(1):63-72.
DOI: 10.1016/j.prosdent.2020.11.015.
View
15.
Shin Y, Han C, Heo S, Kim S, Chun H
. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. Int J Oral Maxillofac Implants. 2006; 21(5):789-94.
View
16.
Dard M, Kuehne S, Obrecht M, Grandin M, Helfenstein J, Pippenger B
. Integrative Performance Analysis of a Novel Bone Level Tapered Implant. Adv Dent Res. 2016; 28(1):28-33.
DOI: 10.1177/0022034515624443.
View
17.
Linkevicius T, Linkevicius R, Alkimavicius J, Linkeviciene L, Andrijauskas P, Puisys A
. Influence of titanium base, lithium disilicate restoration and vertical soft tissue thickness on bone stability around triangular-shaped implants: A prospective clinical trial. Clin Oral Implants Res. 2018; 29(7):716-724.
DOI: 10.1111/clr.13263.
View
18.
Hamudi N, Barnea E, Weinberg E, Laviv A, Mijiritsky E, Matalon S
. The Association of the One-Abutment at One-Time Concept with Marginal Bone Loss around the SLA and Platform Switch and Conical Abutment Implants. J Clin Med. 2022; 11(1).
PMC: 8745541.
DOI: 10.3390/jcm11010074.
View
19.
Steiner C, Karl M, Grobecker-Karl T
. Insertion and Loading Characteristics of Three Different Bone-Level Implants. Int J Oral Maxillofac Implants. 2020; 35(3):560-565.
DOI: 10.11607/jomi.7770.
View
20.
Suarez F, Chan H, Monje A, Galindo-Moreno P, Wang H
. Effect of the timing of restoration on implant marginal bone loss: a systematic review. J Periodontol. 2012; 84(2):159-69.
DOI: 10.1902/jop.2012.120099.
View