» Articles » PMID: 35328767

Characterization of Chromosomal Breakpoints in 12 Cases with 8p Rearrangements Defines a Continuum of Fragility of the Region

Abstract

Improvements in microarray-based comparative genomic hybridization technology have allowed for high-resolution detection of genome wide copy number alterations, leading to a better definition of rearrangements and supporting the study of pathogenesis mechanisms. In this study, we focused our attention on chromosome 8p. We report 12 cases of 8p rearrangements, analyzed by molecular karyotype, evidencing a continuum of fragility that involves the entire short arm. The breakpoints seem more concentrated in three intervals: one at the telomeric end, the others at 8p23.1, close to the beta-defensin gene cluster and olfactory receptor low-copy repeats. Hypothetical mechanisms for all cases are described. Our data extend the cohort of published patients with 8p aberrations and highlight the need to pay special attention to these sequences due to the risk of formation of new chromosomal aberrations with pathological effects.

Citing Articles

Olfactory receptor genes and chromosome 11 structural aberrations: Players or spectators?.

Redaelli S, Grati F, Tritto V, Giannuzzi G, Recalcati M, Sala E HGG Adv. 2023; 5(2):100261.

PMID: 38160254 PMC: 10820794. DOI: 10.1016/j.xhgg.2023.100261.


Genomic Complexity and Complex Chromosomal Rearrangements in Genetic Diagnosis: Two Illustrative Cases on Chromosome 7.

Villa N, Redaelli S, Farina S, Conconi D, Sala E, Crosti F Genes (Basel). 2023; 14(9).

PMID: 37761840 PMC: 10530880. DOI: 10.3390/genes14091700.


Genetic heterogeneity in corpus callosum agenesis.

Panzaru M, Popa S, Lupu A, Gavrilovici C, Lupu V, Gorduza E Front Genet. 2022; 13:958570.

PMID: 36246626 PMC: 9562966. DOI: 10.3389/fgene.2022.958570.


Mechanisms of structural chromosomal rearrangement formation.

Burssed B, Zamariolli M, Bellucco F, Melaragno M Mol Cytogenet. 2022; 15(1):23.

PMID: 35701783 PMC: 9199198. DOI: 10.1186/s13039-022-00600-6.

References
1.
Logsdon G, Vollger M, Hsieh P, Mao Y, Liskovykh M, Koren S . The structure, function and evolution of a complete human chromosome 8. Nature. 2021; 593(7857):101-107. PMC: 8099727. DOI: 10.1038/s41586-021-03420-7. View

2.
Nevado J, Ho K, Zollino M, Blanco R, Cobaleda C, Golzio C . International meeting on Wolf-Hirschhorn syndrome: Update on the nosology and new insights on the pathogenic mechanisms for seizures and growth delay. Am J Med Genet A. 2019; 182(1):257-267. DOI: 10.1002/ajmg.a.61406. View

3.
Knijnenburg J, van Haeringen A, Hansson K, Lankester A, Smit M, Belfroid R . Ring chromosome formation as a novel escape mechanism in patients with inverted duplication and terminal deletion. Eur J Hum Genet. 2007; 15(5):548-55. DOI: 10.1038/sj.ejhg.5201807. View

4.
Buysse K, Antonacci F, Callewaert B, Loeys B, Frankel U, Siu V . Unusual 8p inverted duplication deletion with telomere capture from 8q. Eur J Med Genet. 2008; 52(1):31-6. DOI: 10.1016/j.ejmg.2008.10.007. View

5.
Barber J, Rosenfeld J, Foulds N, Laird S, Bateman M, Thomas N . 8p23.1 duplication syndrome; common, confirmed, and novel features in six further patients. Am J Med Genet A. 2013; 161A(3):487-500. DOI: 10.1002/ajmg.a.35767. View