» Articles » PMID: 35324888

Significant Sparse Polygenic Risk Scores Across 813 Traits in UK Biobank

Overview
Journal PLoS Genet
Specialty Genetics
Date 2022 Mar 24
PMID 35324888
Authors
Affiliations
Soon will be listed here.
Abstract

We present a systematic assessment of polygenic risk score (PRS) prediction across more than 1,500 traits using genetic and phenotype data in the UK Biobank. We report 813 sparse PRS models with significant (p < 2.5 x 10-5) incremental predictive performance when compared against the covariate-only model that considers age, sex, types of genotyping arrays, and the principal component loadings of genotypes. We report a significant correlation between the number of genetic variants selected in the sparse PRS model and the incremental predictive performance (Spearman's ⍴ = 0.61, p = 2.2 x 10-59 for quantitative traits, ⍴ = 0.21, p = 9.6 x 10-4 for binary traits). The sparse PRS model trained on European individuals showed limited transferability when evaluated on non-European individuals in the UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://biobankengine.stanford.edu/prs).

Citing Articles

Assessment of polygenic risk score performance in East Asian populations for ten common diseases.

Jung H, Jung H, Baek E, Kang J, Kwon S, You J Commun Biol. 2025; 8(1):374.

PMID: 40045046 PMC: 11882803. DOI: 10.1038/s42003-025-07767-9.


Nuclear regulatory disturbances precede and predict the development of Type-2 diabetes in Asian populations.

Jain P, Ng H, Tay D, Mina T, Low D, Sadhu N medRxiv. 2025; .

PMID: 39990582 PMC: 11844604. DOI: 10.1101/2025.02.14.25322264.


Enhancing the utility of polygenic scores in Alzheimer's disease through systematic curation and annotation.

Mwesigwa S, Dai Y, Enduru N, Zhao Z Front Genet. 2025; 16:1507395.

PMID: 39967687 PMC: 11832703. DOI: 10.3389/fgene.2025.1507395.


Migraine Genetic Susceptibility Does Not Strongly Influence Migraine Characteristics and Outcomes in a Treated, Real-World, Community Cohort.

Chase B, Frigerio R, Rubin S, Semenov I, Meyers S, Mark A J Clin Med. 2025; 14(2).

PMID: 39860542 PMC: 11765864. DOI: 10.3390/jcm14020536.


Effects of Genetic Risk and Lifestyle Habits on Gout: A Korean Cohort Study.

Kim H, Do H, Son C, Jang J, Choi S, Moon K J Korean Med Sci. 2025; 40(2):e1.

PMID: 39807002 PMC: 11729237. DOI: 10.3346/jkms.2025.40.e1.


References
1.
Richardson T, Harrison S, Hemani G, Davey Smith G . An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. Elife. 2019; 8. PMC: 6400585. DOI: 10.7554/eLife.43657. View

2.
Lam B, Williamson A, Finer S, Day F, Tadross J, Goncalves Soares A . MC3R links nutritional state to childhood growth and the timing of puberty. Nature. 2021; 599(7885):436-441. PMC: 8819628. DOI: 10.1038/s41586-021-04088-9. View

3.
Choi S, OReilly P . PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019; 8(7). PMC: 6629542. DOI: 10.1093/gigascience/giz082. View

4.
Mars N, Koskela J, Ripatti P, Kiiskinen T, Havulinna A, Lindbohm J . Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat Med. 2020; 26(4):549-557. DOI: 10.1038/s41591-020-0800-0. View

5.
Li R, Chang C, Justesen J, Tanigawa Y, Qian J, Hastie T . Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications to UK Biobank. Biostatistics. 2020; 23(2):522-540. PMC: 9007437. DOI: 10.1093/biostatistics/kxaa038. View