» Articles » PMID: 35314680

Fatty Acid Oxidation Fuels Glioblastoma Radioresistance with CD47-mediated Immune Evasion

Abstract

Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A, CPT2, ACAD9 cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.

Citing Articles

Establishment of an alternative splicing prognostic risk model and identification of FN1 as a potential biomarker in glioblastoma multiforme.

Liu X, Song J, Zhou Z, He Y, Wu S, Yang J Sci Rep. 2025; 15(1):6716.

PMID: 40000711 PMC: 11862013. DOI: 10.1038/s41598-025-91038-4.


Energy metabolism in health and diseases.

Liu H, Wang S, Wang J, Guo X, Song Y, Fu K Signal Transduct Target Ther. 2025; 10(1):69.

PMID: 39966374 PMC: 11836267. DOI: 10.1038/s41392-025-02141-x.


Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

Wang G, Wang D, Xia L, Lian J, Zhang Q, Shen D ACS Appl Mater Interfaces. 2025; 17(5):7478-7488.

PMID: 39871538 PMC: 11803545. DOI: 10.1021/acsami.4c21028.


Fatty acid metabolism: A new target for nasopharyngeal carcinoma therapy.

Li J, Ping P, Li Y, Xu X Chin J Cancer Res. 2025; 36(6):652-668.

PMID: 39802901 PMC: 11724175. DOI: 10.21147/j.issn.1000-9604.2024.06.05.


Molecule interacting with CasL-2 enhances tumor progression and alters radiosensitivity in cervical cancer.

Teng Y, Zhao H, Xue G, Zhang G, Huang Y, Guo W J Transl Med. 2025; 23(1):44.

PMID: 39799334 PMC: 11725214. DOI: 10.1186/s12967-024-06065-y.


References
1.
Stupp R, Mason W, van den Bent M, Weller M, Fisher B, Taphoorn M . Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352(10):987-96. DOI: 10.1056/NEJMoa043330. View

2.
Wen P, Kesari S . Malignant gliomas in adults. N Engl J Med. 2008; 359(5):492-507. DOI: 10.1056/NEJMra0708126. View

3.
Ostrom Q, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C . CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019; 21(Suppl 5):v1-v100. PMC: 6823730. DOI: 10.1093/neuonc/noz150. View

4.
Vatner R, Cooper B, Vanpouille-Box C, Demaria S, Formenti S . Combinations of immunotherapy and radiation in cancer therapy. Front Oncol. 2014; 4:325. PMC: 4246656. DOI: 10.3389/fonc.2014.00325. View

5.
Marciscano A, Walker J, McGee H, Kim M, Kunos C, Monjazeb A . Incorporating Radiation Oncology into Immunotherapy: proceedings from the ASTRO-SITC-NCI immunotherapy workshop. J Immunother Cancer. 2018; 6(1):6. PMC: 5787916. DOI: 10.1186/s40425-018-0317-y. View