6.
Chu C, Trapnell B, Curristin S, Cutting G, Crystal R
. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993; 3(2):151-6.
DOI: 10.1038/ng0293-151.
View
7.
Sato K, Sato F
. Individual variations in structure and function of human eccrine sweat gland. Am J Physiol. 1983; 245(2):R203-8.
DOI: 10.1152/ajpregu.1983.245.2.R203.
View
8.
Zlotogora J
. Penetrance and expressivity in the molecular age. Genet Med. 2003; 5(5):347-52.
DOI: 10.1097/01.gim.0000086478.87623.69.
View
9.
Reddy M, Bell C, Quinton P
. Evidence of two distinct epithelial cell types in primary cultures from human sweat gland secretory coil. Am J Physiol. 1992; 262(4 Pt 1):C891-8.
DOI: 10.1152/ajpcell.1992.262.4.C891.
View
10.
Willmott A, Holliss R, Saynor Z, Corbett J, Causer A, S Maxwell N
. Heat acclimation improves sweat gland function and lowers sweat sodium concentration in an adult with cystic fibrosis. J Cyst Fibros. 2020; 20(3):485-488.
DOI: 10.1016/j.jcf.2020.07.013.
View
11.
Shah V, Ernst S, Tang X, Karp P, Parker C, Ostedgaard L
. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci U S A. 2016; 113(19):5382-7.
PMC: 4868420.
DOI: 10.1073/pnas.1604905113.
View
12.
Wine J, Char J, Chen J, Cho H, Dunn C, Frisbee E
. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands. PLoS One. 2013; 8(10):e77114.
PMC: 3811985.
DOI: 10.1371/journal.pone.0077114.
View
13.
Collaco J, Blackman S, Raraigh K, Corvol H, Rommens J, Pace R
. Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis. Am J Respir Crit Care Med. 2016; 194(11):1375-1382.
PMC: 5148144.
DOI: 10.1164/rccm.201603-0459OC.
View
14.
Emrich H, Stoll E, FRIOLET B, COLOMBO J, Richterich R, Rossi E
. Sweat composition in relation to rate of sweating in patients with cystic fibrosis of the pancreas. Pediatr Res. 1968; 2(6):464-78.
DOI: 10.1203/00006450-196811000-00004.
View
15.
Joo N, Wu J, Krouse M, Saenz Y, Wine J
. Optical method for quantifying rates of mucus secretion from single submucosal glands. Am J Physiol Lung Cell Mol Physiol. 2001; 281(2):L458-68.
DOI: 10.1152/ajplung.2001.281.2.L458.
View
16.
Behm J, Hagiwara G, Lewiston N, Quinton P, Wine J
. Hyposecretion of beta-adrenergically induced sweating in cystic fibrosis heterozygotes. Pediatr Res. 1987; 22(3):271-6.
DOI: 10.1203/00006450-198709000-00007.
View
17.
Chu C, Trapnell B, Murtagh Jr J, Moss J, Dalemans W, Jallat S
. Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J. 1991; 10(6):1355-63.
PMC: 452795.
DOI: 10.1002/j.1460-2075.1991.tb07655.x.
View
18.
Callen A, Diener-West M, Zeitlin P, Rubenstein R
. A simplified cyclic adenosine monophosphate-mediated sweat rate test for quantitative measure of cystic fibrosis transmembrane regulator (CFTR) function. J Pediatr. 2000; 137(6):849-55.
DOI: 10.1067/mpd.2000.109198.
View
19.
Sato K, Sato F
. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984; 73(6):1763-71.
PMC: 437089.
DOI: 10.1172/JCI111385.
View
20.
Rosen B, Evans T, Moll S, Gray J, Liang B, Sun X
. Infection Is Not Required for Mucoinflammatory Lung Disease in CFTR-Knockout Ferrets. Am J Respir Crit Care Med. 2018; 197(10):1308-1318.
PMC: 5955060.
DOI: 10.1164/rccm.201708-1616OC.
View