Resistance to RNA Interference by Plant-derived Double-stranded RNAs but Not Plant-derived Short Interfering RNAs in Helicoverpa Armigera
Overview
Authors
Affiliations
Plant-mediated RNA interference (RNAi) has emerged as a promising technology for pest control through expression of double-stranded RNAs (dsRNAs) targeted against essential insect genes. However, little is known about the underlying molecular mechanisms and whether long dsRNA or short interfering RNAs (siRNAs) are the effective triggers of the RNAi response. Here we generated transplastomic and nuclear transgenic tobacco plants expressing dsRNA against the Helicoverpa armigera ATPaseH gene. We showed that expression of long dsRNA of HaATPaseH was at least three orders of magnitude higher in transplastomic plants than in transgenic plants. HaATPaseH-derived siRNAs are absent from transplastomic plants, while they are abundant in transgenic plants. Feeding transgenic plants to H. armigera larvae reduced gene expression of HaATPaseH and delayed growth. Surprisingly, no effect of transplastomic plants on insect growth was observed, despite efficient dsRNA expression in plastids. Furthermore, we found that dsRNA ingested by H. armigera feeding on transplastomic plants was rapidly degraded in the intestinal fluid. In contrast, siRNAs are relatively stable in the digestive system. These results suggest that plant-derived siRNAs may be more effective triggers of RNAi in Lepidoptera than dsRNAs, which will aid the optimization of the strategies for plant-mediated RNAi to pest control.
Disrupting in the prothoracic gland induced larval development arrest in the fall armyworm .
Wu M, Fan S, Zhang Y, Tan J, Zhu G Front Physiol. 2024; 15:1502753.
PMID: 39722728 PMC: 11668756. DOI: 10.3389/fphys.2024.1502753.
Recent advances in understanding of the mechanisms of RNA interference in insects.
Koo J, Palli S Insect Mol Biol. 2024; .
PMID: 38957135 PMC: 11695441. DOI: 10.1111/imb.12941.
Wang H, Song J, Hunt B, Zuo K, Zhou H, Hayward A Proc Natl Acad Sci U S A. 2024; 121(19):e2402045121.
PMID: 38683998 PMC: 11087754. DOI: 10.1073/pnas.2402045121.
Dichotomous sperm in Lepidopteran insects: a biorational target for pest management.
Seth R, Yadav P, Reynolds S Front Insect Sci. 2024; 3:1198252.
PMID: 38469506 PMC: 10926456. DOI: 10.3389/finsc.2023.1198252.
Chen W, Amir M, Liao Y, Yu H, He W, Lu Z J Agric Food Chem. 2023; 71(29):10952-10969.
PMID: 37462091 PMC: 10375594. DOI: 10.1021/acs.jafc.3c03246.