» Articles » PMID: 35310906

Multiscale Modeling in Disease

Overview
Date 2022 Mar 21
PMID 35310906
Authors
Affiliations
Soon will be listed here.
Abstract

Multiscale computational modeling aims to connect the complex networks of effects at different length and/or time scales. For example, these networks often include intracellular molecular signaling, crosstalk, and other interactions between neighboring cell populations, and higher levels of emergent phenomena across different regions of tissues and among collections of tissues or organs interacting with each other in the whole body. Recent applications of multiscale modeling across intracellular, cellular, and/or tissue levels are highlighted here. These models incorporated the roles of biochemical and biomechanical modulation in processes that are implicated in the mechanisms of several diseases including fibrosis, joint and bone diseases, respiratory infectious diseases, and cancers.

Citing Articles

A review of mathematical modeling of bone remodeling from a systems biology perspective.

Cook C, Lighty A, Smith B, Ford Versypt A Front Syst Biol. 2025; 4.

PMID: 40012834 PMC: 11864782. DOI: 10.3389/fsysb.2024.1368555.


Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease.

Leonard-Duke J, Agro S, Csordas D, Bruce A, Eggertsen T, Tavakol T PNAS Nexus. 2024; 4(1):pgae551.

PMID: 39720203 PMC: 11667245. DOI: 10.1093/pnasnexus/pgae551.


Building multiscale models with PhysiBoSS, an agent-based modeling tool.

Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L Brief Bioinform. 2024; 25(6).

PMID: 39425527 PMC: 11489466. DOI: 10.1093/bib/bbae509.


A rule-based multiscale model of hepatic stellate cell plasticity: Critical role of the inactivation loop in fibrosis progression.

Bougueon M, Legagneux V, Hazard O, Bomo J, Siegel A, Feret J PLoS Comput Biol. 2024; 20(7):e1011858.

PMID: 39074160 PMC: 11309422. DOI: 10.1371/journal.pcbi.1011858.


Mathematical Modeling Support for Lung Cancer Therapy-A Short Review.

Smieja J Int J Mol Sci. 2023; 24(19).

PMID: 37833963 PMC: 10572824. DOI: 10.3390/ijms241914516.

References
1.
Cantone M, Santos G, Wentker P, Lai X, Vera J . Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection. Front Physiol. 2017; 8:645. PMC: 5582318. DOI: 10.3389/fphys.2017.00645. View

2.
Swat M, Thomas G, Belmonte J, Shirinifard A, Hmeljak D, Glazier J . Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol. 2012; 110:325-66. PMC: 3612985. DOI: 10.1016/B978-0-12-388403-9.00013-8. View

3.
Konstorum A, Vella A, Adler A, Laubenbacher R . Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface. 2017; 14(131). PMC: 5493798. DOI: 10.1098/rsif.2017.0150. View

4.
Renardy M, Hult C, Evans S, Linderman J, Kirschner D . Global sensitivity analysis of biological multi-scale models. Curr Opin Biomed Eng. 2020; 11:109-116. PMC: 7450543. DOI: 10.1016/j.cobme.2019.09.012. View

5.
Zeigler A, Richardson W, Holmes J, Saucerman J . Computational modeling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol. 2015; 93:73-83. PMC: 4846515. DOI: 10.1016/j.yjmcc.2015.11.020. View