» Articles » PMID: 35302893

The 103,200-arm Acceleration Dataset in the UK Biobank Revealed a Landscape of Human Sleep Phenotypes

Overview
Specialty Science
Date 2022 Mar 18
PMID 35302893
Authors
Affiliations
Soon will be listed here.
Abstract

SignificanceHuman sleep phenotypes are diversified by genetic and environmental factors, and a quantitative classification of sleep phenotypes would lead to the advancement of biomedical mechanisms underlying human sleep diversity. To achieve that, a pipeline of data analysis, including a state-of-the-art sleep/wake classification algorithm, the uniform manifold approximation and projection (UMAP) dimension reduction method, and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, was applied to the 100,000-arm acceleration dataset. This revealed 16 clusters, including seven different insomnia-like phenotypes. This kind of quantitative pipeline of sleep analysis is expected to promote data-based diagnosis of sleep disorders and psychiatric disorders that tend to be complicated by sleep disorders.

Citing Articles

Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features.

Lim D, Jeong J, Song Y, Cho C, Yeom J, Lee T NPJ Digit Med. 2024; 7(1):324.

PMID: 39557997 PMC: 11574068. DOI: 10.1038/s41746-024-01333-z.


Assessment of sleep patterns in dementia and general population cohorts using passive in-home monitoring technologies.

Rigny L, Fletcher-Lloyd N, Capstick A, Nilforooshan R, Barnaghi P Commun Med (Lond). 2024; 4(1):222.

PMID: 39482458 PMC: 11527978. DOI: 10.1038/s43856-024-00646-0.


The Two Fundamental Shapes of Sleep Heart Rate Dynamics and Their Connection to Mental Health in College Students.

Fudolig M, Bloomfield L, Price M, Bird Y, Hidalgo J, Kim J Digit Biomark. 2024; 8(1):120-131.

PMID: 39015512 PMC: 11250749. DOI: 10.1159/000539487.


Five million nights: temporal dynamics in human sleep phenotypes.

Viswanath V, Hartogenesis W, Dilchert S, Pandya L, Hecht F, Mason A NPJ Digit Med. 2024; 7(1):150.

PMID: 38902390 PMC: 11190239. DOI: 10.1038/s41746-024-01125-5.


Just-in-Time Adaptive Intervention for Stabilizing Sleep Hours of Japanese Workers: Microrandomized Trial.

Takeuchi H, Ishizawa T, Kishi A, Nakamura T, Yoshiuchi K, Yamamoto Y J Med Internet Res. 2024; 26:e49669.

PMID: 38861313 PMC: 11200036. DOI: 10.2196/49669.


References
1.
Roenneberg T, Allebrandt K, Merrow M, Vetter C . Social jetlag and obesity. Curr Biol. 2012; 22(10):939-43. DOI: 10.1016/j.cub.2012.03.038. View

2.
Dashti H, Jones S, Wood A, Lane J, van Hees V, Wang H . Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun. 2019; 10(1):1100. PMC: 6405943. DOI: 10.1038/s41467-019-08917-4. View

3.
Xu Y, Padiath Q, Shapiro R, Jones C, Wu S, Saigoh N . Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005; 434(7033):640-4. DOI: 10.1038/nature03453. View

4.
van Hees V, Sabia S, Jones S, Wood A, Anderson K, Kivimaki M . Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018; 8(1):12975. PMC: 6113241. DOI: 10.1038/s41598-018-31266-z. View

5.
Kosmadopoulos A, Sargent C, Darwent D, Zhou X, Roach G . Alternatives to polysomnography (PSG): a validation of wrist actigraphy and a partial-PSG system. Behav Res Methods. 2014; 46(4):1032-41. DOI: 10.3758/s13428-013-0438-7. View