Ultrafast Metamaterial All-optical Switching Based on Coherent Modulation
Overview
Authors
Affiliations
We report a demonstration of an ultrafast all-optical switching with unique light control effects. The all-optical switching consists of a gold film with asymmetric split rings and a silica substrate. The device effectively controls the transmission and absorption of continuous pulses in the communication band (1200-1800 nm) and short pulses with a pulse duration of 80 fs by using the interaction of two coherent beams on nano-metamaterials with a thickness of only 50 nm. The metamaterial can achieve more than 90 % output control under continuous light irradiation. When the pulse duration is 80 fs, the switching contrast ratio is greater than 3 : 1 and the modulation bandwidth is greater than 12.5 THz. Switching time can be on the order of femtosecond. This paper provides a new structure for ultra-high speed optical data processing components in coherent networks.