» Articles » PMID: 35295714

Toolbox for Studying Neurovascular Coupling , with a Focus on Vascular Activity and Calcium Dynamics in Astrocytes

Overview
Journal Neurophotonics
Date 2022 Mar 17
PMID 35295714
Authors
Affiliations
Soon will be listed here.
Abstract

Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable, signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocytic dynamics simultaneously with vascular activity using tools appropriate for the question of interest. To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyte dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocytic elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. We provide an overview of the current state of NVC research, focusing on the role of astrocytic elevations in functional hyperemia; summarize recent advances in genetically engineered indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.

Citing Articles

Ten-kilohertz two-photon microscopy imaging of single-cell dendritic activity and hemodynamics .

Li R, Wang S, Lyu J, Chen K, Sun X, Huang J Neurophotonics. 2023; 10(2):025006.

PMID: 37152357 PMC: 10156610. DOI: 10.1117/1.NPh.10.2.025006.


Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice.

Ahn S, Anfray A, Anrather J, Iadecola C J Cereb Blood Flow Metab. 2023; 43(10):1633-1647.

PMID: 37149758 PMC: 10581240. DOI: 10.1177/0271678X231173175.


Astrocyte Heterogeneity in Regulation of Synaptic Activity.

Kruyer A Cells. 2022; 11(19).

PMID: 36231097 PMC: 9562199. DOI: 10.3390/cells11193135.


Special Section Guest Editorial: Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces.

Shih A, Coelho-Santos V, Kilic K Neurophotonics. 2022; 9(3):031901.

PMID: 36204654 PMC: 9529636. DOI: 10.1117/1.NPh.9.3.031901.


Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology.

Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati L Int J Mol Sci. 2022; 23(10).

PMID: 35628615 PMC: 9145073. DOI: 10.3390/ijms23105805.


References
1.
Yu X, Nagai J, Khakh B . Improved tools to study astrocytes. Nat Rev Neurosci. 2020; 21(3):121-138. DOI: 10.1038/s41583-020-0264-8. View

2.
So P, Dong C, Masters B, Berland K . Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2001; 2:399-429. DOI: 10.1146/annurev.bioeng.2.1.399. View

3.
Nett W, Oloff S, McCarthy K . Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol. 2002; 87(1):528-37. DOI: 10.1152/jn.00268.2001. View

4.
Helmchen F, Fee M, Tank D, Denk W . A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron. 2001; 31(6):903-12. DOI: 10.1016/s0896-6273(01)00421-4. View

5.
Shigetomi E, Kracun S, Khakh B . Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol. 2011; 6(3):183-91. PMC: 3136572. DOI: 10.1017/S1740925X10000219. View