» Articles » PMID: 35292647

Comprehensive Evaluation of Deconvolution Methods for Human Brain Gene Expression

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Mar 16
PMID 35292647
Authors
Affiliations
Soon will be listed here.
Abstract

Transcriptome deconvolution aims to estimate the cellular composition of an RNA sample from its gene expression data, which in turn can be used to correct for composition differences across samples. The human brain is unique in its transcriptomic diversity, and comprises a complex mixture of cell-types, including transcriptionally similar subtypes of neurons. Here, we carry out a comprehensive evaluation of deconvolution methods for human brain transcriptome data, and assess the tissue-specificity of our key observations by comparison with human pancreas and heart. We evaluate eight transcriptome deconvolution approaches and nine cell-type signatures, testing the accuracy of deconvolution using in silico mixtures of single-cell RNA-seq data, RNA mixtures, as well as nearly 2000 human brain samples. Our results identify the main factors that drive deconvolution accuracy for brain data, and highlight the importance of biological factors influencing cell-type signatures, such as brain region and in vitro cell culturing.

Citing Articles

A neuro-immune axis of transcriptomic dysregulation within the subgenual anterior cingulate cortex in schizophrenia.

Smith R, Mihalik A, Akula N, Auluck P, Marenco S, Raznahan A bioRxiv. 2025; .

PMID: 39990369 PMC: 11844519. DOI: 10.1101/2025.02.14.638357.


Regulation of Plant Growth and Development by Melatonin.

Shi D, Zhao L, Zhang R, Song Q Life (Basel). 2025; 14(12.

PMID: 39768314 PMC: 11678759. DOI: 10.3390/life14121606.


Same-Slide Spatial Multi-Omics Integration Reveals Tumor Virus-Linked Spatial Reorganization of the Tumor Microenvironment.

Yeo Y, Chang Y, Qiu H, Yiu S, Michel H, Wu W bioRxiv. 2025; .

PMID: 39764057 PMC: 11702642. DOI: 10.1101/2024.12.20.629650.


Efficient derivation of functional astrocytes from human induced pluripotent stem cells (hiPSCs).

Szeky B, Jurakova V, Fouskova E, Feher A, Zana M, Karl V PLoS One. 2024; 19(12):e0313514.

PMID: 39630626 PMC: 11616838. DOI: 10.1371/journal.pone.0313514.


Multilayer Analysis of RNA Sequencing Data in Alzheimer's Disease to Unravel Molecular Mysteries.

Uzuner D, Ilgun A, Duz E, Bozkurt F, Cakir T Adv Neurobiol. 2024; 41:219-246.

PMID: 39589716 DOI: 10.1007/978-3-031-69188-1_9.


References
1.
Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K . Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics. 2018; 34(11):1969-1979. DOI: 10.1093/bioinformatics/bty019. View

2.
Pelvig D, Pakkenberg H, Stark A, Pakkenberg B . Neocortical glial cell numbers in human brains. Neurobiol Aging. 2007; 29(11):1754-62. DOI: 10.1016/j.neurobiolaging.2007.04.013. View

3.
Frishberg A, Peshes-Yaloz N, Cohn O, Rosentul D, Steuerman Y, Valadarsky L . Cell composition analysis of bulk genomics using single-cell data. Nat Methods. 2019; 16(4):327-332. PMC: 6443043. DOI: 10.1038/s41592-019-0355-5. View

4.
Yang L, Yang Y, Yuan J, Sun Y, Dai J, Su B . Transcriptomic Landscape of von Economo Neurons in Human Anterior Cingulate Cortex Revealed by Microdissected-Cell RNA Sequencing. Cereb Cortex. 2018; 29(2):838-851. PMC: 6319179. DOI: 10.1093/cercor/bhy286. View

5.
Mendizabal I, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C . Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 2019; 20(1):135. PMC: 6617737. DOI: 10.1186/s13059-019-1747-7. View