» Articles » PMID: 35283790

Weighing in on Adipogenesis

Overview
Journal Front Physiol
Date 2022 Mar 14
PMID 35283790
Authors
Affiliations
Soon will be listed here.
Abstract

Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.

Citing Articles

Vitamin D and Type 2 Diabetes Mellitus: Molecular Mechanisms and Clinical Implications-A Narrative Review.

Fuentes-Barria H, Aguilera-Eguia R, Flores-Fernandez C, Angarita-Davila L, Rojas-Gomez D, Alarcon-Rivera M Int J Mol Sci. 2025; 26(5).

PMID: 40076782 PMC: 11900948. DOI: 10.3390/ijms26052153.


Silk Fibroin Nanoparticles as a Drug Delivery System of 3,3'-Diindolylmethane with Potential Antiobesogenic Activity.

Sanchez-Trasvina C, Lorenzo-Anota H, Escobar-Fernandez A, Lezama-Aguilar D, Morales-Martinez A, Velez-Barcelo A ACS Omega. 2024; 9(48):47661-47671.

PMID: 39651090 PMC: 11618424. DOI: 10.1021/acsomega.4c07203.


SMYD3: a new regulator of adipocyte precursor proliferation at the early steps of differentiation.

Sajic T, Ferreira Gomes C, Gasser M, Caputo T, Bararpour N, Landaluce-Iturriria E Int J Obes (Lond). 2023; 48(4):557-566.

PMID: 38148333 PMC: 10978492. DOI: 10.1038/s41366-023-01450-x.


FoxO1 as a tissue-specific therapeutic target for type 2 diabetes.

Teaney N, Cyr N Front Endocrinol (Lausanne). 2023; 14:1286838.

PMID: 37941908 PMC: 10629996. DOI: 10.3389/fendo.2023.1286838.


Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet.

Buniam J, Chansela P, Weerachayaphorn J, Saengsirisuwan V Biomedicines. 2023; 11(7).

PMID: 37509710 PMC: 10377470. DOI: 10.3390/biomedicines11072071.


References
1.
Guo J, Ren R, Yao X, Ye Y, Sun K, Lin J . PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission. Aging (Albany NY). 2020; 12(4):3976-3992. PMC: 7066892. DOI: 10.18632/aging.102866. View

2.
Magre J, Delepine M, Khallouf E, Gedde-Dahl Jr T, Van Maldergem L, Sobel E . Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001; 28(4):365-70. DOI: 10.1038/ng585. View

3.
Jang M, Park U, Kim J, Choi H, Um S, Kim E . CACUL1 reciprocally regulates SIRT1 and LSD1 to repress PPARγ and inhibit adipogenesis. Cell Death Dis. 2017; 8(12):3201. PMC: 5870580. DOI: 10.1038/s41419-017-0070-z. View

4.
Rosen E, MacDougald O . Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006; 7(12):885-96. DOI: 10.1038/nrm2066. View

5.
Ahmadian M, Suh J, Hah N, Liddle C, Atkins A, Downes M . PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013; 19(5):557-66. PMC: 3870016. DOI: 10.1038/nm.3159. View