» Articles » PMID: 35258601

Spacer2PAM: A Computational Framework to Guide Experimental Determination of Functional CRISPR-Cas System PAM Sequences

Overview
Specialty Biochemistry
Date 2022 Mar 8
PMID 35258601
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-guided nucleases from CRISPR-Cas systems expand opportunities for precise, targeted genome modification. Endogenous CRISPR-Cas systems in many prokaryotes are attractive to circumvent expression, functionality, and unintended activity hurdles posed by heterologous CRISPR-Cas effectors. However, each CRISPR-Cas system recognizes a unique set of protospacer adjacent motifs (PAMs), which requires identification by extensive screening of randomized DNA libraries. This challenge hinders development of endogenous CRISPR-Cas systems, especially those based on multi-protein effectors and in organisms that are slow-growing or have transformation idiosyncrasies. To address this challenge, we present Spacer2PAM, an easy-to-use, easy-to-interpret R package built to predict and guide experimental determination of functional PAM sequences for any CRISPR-Cas system given its corresponding CRISPR array as input. Spacer2PAM can be used in a 'Quick' method to generate a single PAM prediction or in a 'Comprehensive' method to inform targeted PAM libraries small enough to screen in difficult to transform organisms. We demonstrate Spacer2PAM by predicting PAM sequences for industrially relevant organisms and experimentally identifying seven PAM sequences that mediate interference from the Spacer2PAM-informed PAM library for the type I-B CRISPR-Cas system from Clostridium autoethanogenum. We anticipate that Spacer2PAM will facilitate the use of endogenous CRISPR-Cas systems for industrial biotechnology and synthetic biology.

Citing Articles

Phylogenomics and genetic analysis of solvent-producing Clostridium species.

Jensen R, Schulz F, Roux S, Klingeman D, Mitchell W, Udwary D Sci Data. 2024; 11(1):432.

PMID: 38693191 PMC: 11063209. DOI: 10.1038/s41597-024-03210-6.


PNA-Pdx: Versatile Peptide Nucleic Acid-Based Detection of Nucleic Acids and SNPs.

Jiang W, Aman R, Ali Z, Rao G, Mahfouz M Anal Chem. 2023; 95(38):14209-14218.

PMID: 37696750 PMC: 10535012. DOI: 10.1021/acs.analchem.3c01809.


Endogenous CRISPR/Cas systems for genome engineering in the acetogens and .

Poulalier-Delavelle M, Baker J, Millard J, Winzer K, Minton N Front Bioeng Biotechnol. 2023; 11:1213236.

PMID: 37425362 PMC: 10328091. DOI: 10.3389/fbioe.2023.1213236.


Analysis of CRISPR-Cas Loci and their Targets in Levilactobacillus brevis.

Goh Y, Wang M, Hou X, He Y, Ou H Interdiscip Sci. 2023; 15(3):349-359.

PMID: 36849628 DOI: 10.1007/s12539-023-00555-1.


Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data.

Ciciani M, Demozzi M, Pedrazzoli E, Visentin E, Pezze L, Signorini L Nat Commun. 2022; 13(1):6474.

PMID: 36309502 PMC: 9617884. DOI: 10.1038/s41467-022-34213-9.

References
1.
Barrangou R, Doudna J . Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016; 34(9):933-941. DOI: 10.1038/nbt.3659. View

2.
Nagaraju S, Davies N, Walker D, Kopke M, Simpson S . Genome editing of using CRISPR/Cas9. Biotechnol Biofuels. 2016; 9:219. PMC: 5069954. DOI: 10.1186/s13068-016-0638-3. View

3.
Williams D, Young D, Young M . Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol. 1990; 136(5):819-26. DOI: 10.1099/00221287-136-5-819. View

4.
Woods C, Humphreys C, Rodrigues R, Ingle P, Rowe P, Henstra A . A novel conjugal donor strain for improved DNA transfer into Clostridium spp. Anaerobe. 2019; 59:184-191. PMC: 6866869. DOI: 10.1016/j.anaerobe.2019.06.020. View

5.
Lee Y, Hoynes-OConnor A, Leong M, Moon T . Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res. 2016; 44(5):2462-73. PMC: 4797300. DOI: 10.1093/nar/gkw056. View